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(ABSTRACT)

Experiments were conducted to measure the three-dimensional static and free
vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames
are semi-circular with a radius of three feet, and one specimen has an I cross section and
the other has a channel cross section. The flexibility influence coefficients were measured
in static tests for loads applied at midspan with the ends of the specimens clamped.
Natural frequencies and modes were determined from vibrational tests for free and
clamped end conditions. The experimental data is used to evaluate a new finite element
which was developed specifically for the analysis of curved, thin-walled structures. The
formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory.

The predictions from the finite element program generally correlated well with the
experimental data for the symmetric I-specimen. Discrepancies in some of the data were
found to be due to flexibility in the ‘clamped’ end conditions. With respect to the data
for the channel specimen, the correlation was less satisfactory. The finite element anal-
ysis predicted the out-of-plane response of the channel specimen reasonably well, but
large discrepancies occurred between the predicted in-plane response and the exper-
imental data. The analysis predicted a much more compliant in-plane response then was

observed in the experiments.
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Chapter 1

Introduction

Background

Fiber reinforced composite materials are used increasingly in the primary structural
components of military aircraft. Use of composites in civilian transport aircraft is gen-
erally limited to secondary structural components. However, the well documented ad-
vantages of composites are motivating designers to use composites more extensively.
Using composites in primary structural components of civilian aircraft raises the issue
of crashworthiness. Research has revealed deficiencies in the energy absorbing capabili-
ties of fiber reinforced composite materials. Though composites are poor energy
absorbers on a material level, it may be possible to design composite structures which
absorb energy efficiently. Thus, the challenge to the engineering community is to design
composite structural components which carry the flight loads and perform satisfactorily

in a crash situation.
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Crashworthiness is a complicated issue, but arguably the primary concerns in a
crash are to maintain a protective shell around the passengers and to keep decelerations
at a survivable level. Aluminum fails in a ductile manner, thus it absorbs energy when
it yields and fails. Fiber reinforced composites tend to fail in a brittle fashion which in-
hibits their ability to absorb energy. It has been found under certain special circum-
stances (e.g., tubes in axial compression) composite structures are able to efficiently
absorb energy via a stable axial crush (Ref. 1). Though crushable composites are an

encouraging development, application of this technology to aircraft design is not immi-

nent.

Before further discussion of the crashworthiness of composite materials, it is in-
formative to review some of the research that has been conducted on the impact re-
sponse of aluminum structural components. Drop tests of full scale aluminum transport
fuselage sections have been conducted at the NASA Langley Research Center (Refs. 2,
3, and 4). The results of drop tests of two fuselage sections are shown in Figs. 1 and 2.
The fuselage section which includes the wing spar (Fig. 1) shows no structural damage,
however, very high inertial loads were transferred to the passenger level. The fuselage
section without the wing spar (Fig. 2) suffered extensive structural damage resulting in
lower inertial loads at the passenger level. Extensive bending failures of the fuselage
frames helped reduce the inertial loads transmitted to the passenger level indicating that
the fuselage frame is an important component in the impact response of a conventional
aircraft.

If aluminum frames play a significant role in energy absorption, then composite
frames may have to behave similarly to obtain acceptable energy absorption. Tests
comparing the impact response of composite and aluminum frames (Ref. 5) showed that

the frames fail in distinctly different fashions. The aluminum frames formed plastic
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Figure 1.

Introduction

Drop test of full scale fuselage section: Fuselage section including the wing spars suffers
little structural damage during drop test, resulting in high inertial loads at the passenger
level. The section was dropped from a height of six feet resulting in an impact velocity of
twenty feet per second.
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hinges at several locations around the frame without fracturing, thus maintaining struc-
tural integrity. Failure of the composite frames involved a complete fracture of the cross
section near the impact point. Complete fracturing of the frame is an undesirable failure

since loss of structural integrity implies an uncrashworthy design.

Tests of built-up composite fuselage subsections (Ref. 6) further demonstrated the
tendency of composite frames to fail in a brittle manner. The photographs in Figs. 3 and
4 show a skeleton subsection before and after the drop test, respectively. The frames
of the subsection suffered numerous localized brittle fractures resulting in loss of struc-
tural integrity and minimal energy absorption. A drop test of another subsection which
had a layer of skin attached to the outside of the frames resulted in a single bfittle frac-
ture of each frame at the impact point. The skin helped the subsection maintain struc-
tural integrity. However, in both cases, very high inertial pulses were transmitted to the
‘passenger level’.

These test results indicate that conventional designs for composite fuselage frames
fail to provide satisfactory impact behavior. The structural design of a composite frame
must complement the material system such that crashworthiness is achieved. Since un-
conventional designs are necessary to utilize composites while maintaining
crashworthiness, it is important to develop reliable analytical tools which can predict the
response of these designs. The reliability of the analyses should be established by com-
parisons with experimental data. This research attempts to provide some of this data and
to evaluate a new finite element computer code. The finite element evaluated here is ex-

pected to be incorporated in the crash analysis finite element program DYCAST.
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Objective

The objectives of this research are to measure the three-dimensional static and vi-
bratory response of two graphite-epoxy frame specimens, and to correlate the exper-
imentally measured response with predictions.from a computer program which uses a
newly developed finite element. The test specimens are thin-walled, open section, semi-
circular frames with a nominal radius of three feet. One specimen has an I cross section
and the other has an asymmetric channel cross section. The finite element was recently
developed by Noor et al. (Ref. 7), for the analysis of curved thin-walled beams with open
sections. The flexibility influence coefficients were measured in static tests for loads ap-
plied at the midspan with the ends of the frames clamped in supports. Dynamic tests
provided the natural frequencies and mode shapes of the frames for free-free and
clamped-clamped end conditions. It is important to validate the analysis for the linear

response of these frames before attempting the nonlinear analysis of frame collapse.

Literature Review

The scope of this research includes both the static and dynamic response of semi-
circular frames. Since few researchers choose to address both topics in a single docu-

ment, it is convenient to divide the literature review accordingly.
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Dynamics

The vibrations of curved beams and rings is an old and recurring topic in the liter-
ature. In general, the vibratory response of a curved beam or ring encompasses in-plane
modes (deformations within the plane of curvature) and out-of-plane modes (defor-
mations out of the plane of curvature). If the curved beam has a plane of symmetry co-
inciding with the plane of curvature, then the in-plane and out-of-plane modes decouple
and can be treated separately. Many early researchers took advantage of this. Only
relatively recently have researchers addressed the coupled vibrational problem of a
curved beam with an asymmetric cross section.

The first published paper addressing the dynamic response of a circular ring was
written by Hoppe (Ref. 8) in 1871. In 1888, Lamb (Ref. 9) determined the in-plane na-
tural frequencies for a shallow ring segment with free-free end conditions. In 1892, Love
(Ref. 10) generated the differential equations governing the vibration of a complete ring,
solved the equations approximately, and presented frequency equations for the in-plane
and out-of-plane modes of a complete ring.

In 1928, Den Hartog (Ref. 11) used a Rayleigh solution to solve for the first in-
plane natural frequency for ring segments with clamped and pinned boundary condi-
tions. Den Hartog found that if the arc length of the ring segment was sufficiently small,
the fundamental in-plane mode was extensional in nature possessing only two nodes
similar to the fundamental mode of a straight beam. Generally, if the opening angle was
greater than 80°, then the fundamental mode had three nodes and was flexural. For a
semi-circular ring segment with clamped boundary coﬁditions, Den Hartog’s solution for

the frequency w in Hertz reduces to
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EIl 1
o = O.6971< Y )7 (L1

where El, is the in-plane bending stiffness, y is the mass per unit length, and a is the
radius of the ring segment.

In 1934, Brown (Ref. 12) used a modified Rayleigh solution to obtain the natural
frequency of the fundamental out-of-plane mode for a clamped circular ring segment.

For a semi-circular ring segment, Brown’s solution for the frequency  in Hertz reduces

to

o = <1084 ( LYz (1.2)

assuming the ratio of in-plane bending stiffness to torsional stiffness is large
(k = EI,/C > 75) where C is the torsional stiffness as defined by Timoshenko (Ref.
13), y is the mass per unit length, and a is the radius of the ring segment.

The vibrational response of curved beams and rings attracted moderate attention
during the 30’s, 40’s, and 50’s as researchers sought to improve their predictions by in-
corporating refinements such as rotatory inertia and transverse shear deformation. In
the interest of brevity, the body of literature from this period will not be addressed as 1t
is of limited interest here. The interested reader may refer to two papers by Lang (Refs.
14 and 15) and the dissertation of Maddox (Ref. 16) for a complete review of this period.

In 1963, Hammoud and Archer (Ref. 17) published an interesting paper addressing
the coupled vibrational response of complete rings and ring segments with asymmetric
cross sections. They presented the coupled differential equations governing the in-plane
and out-of-plane vibrations and used an approximate solution to the decoupled problem

as their first guess in an iterative procedure to solve for the coupled natural frequencies.
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Hammoud and Archer limited their scope to solid cross sections as their solution does
not account for the effects of cross-sectional warping.

Maddox (Ref. 16) addressed the decoupled vibrations of a complete thin-walled ring
with one plane of symmetry. His solution accounts for transverse shear deformation,
rotatory inertia, cross-sectional warping, and shear center eccentricity. Maddox reduced
a higher order shell theory to a ring theory by integrating around the contour of the
cross section and making explicit assumptions on the shell displacements. Maddox
showed that shear center eccentricity and warping have significant effects on the re-
sponse of some thin-walled rings.

Endo (Ref. 18) solved for the vibrational response of a complete ring with an arbi-
trary cross section. Kirkhope, Bell, and Olmstead (Ref. 19) also solved for the coupled
vibrational response of a complete ring with an arbitrary cross section and presented
experimental data in order to test their solution. These solutions are restricted to solid
cross sections since warping is not included. Williams (Ref. 20) developed the differen-
tial equations for complete thin-walled rings and applied them to several examples in-
cluding ring segments with symmetric cross sections. Williams included the effects of
transverse shear, rotatory inertia, and warping in his solution.

Rao (Ref. 21) solved for the out-of-plane vibrational response of complete rings and
ring segments. Rao included transverse shear deformation and rotatory inertia in his
solution. He found that he could model a variety of unusual boundary conditions.
Culver (Ref. 22) used Vlasov’s (Ref. 23) thin-walled beam theory in his solution for the
decoupled out-of-plane response of a curved beam. Culver assumed the cross section of
the beam was doubly symmetric and treated the inértia terms as a distributed load in
Vlasov’s static formulation. Culver does not consider the inertia terms associated with

warping.
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Gardner and Bert (Ref. 24) presented a new first approximation theory for the in-
plane dynamic behavior of shear deformable structures. Several references are made
about the application of this theory to composite structures, but it was not addressed
explicitly. The paper does include some experimental data on thick full rings. Bhimaraddi
(Ref. 25) specifically addresses the dynamic response of curved laminated beams, though
his discussions are limited to rectangular cross sections. Bhimaraddi found that coupling
of in-plane and out-of-plane modes can happen despite a geometrically symmetric cross
section if the ring is an unsymmetric laminate. Bhimaraddi presents the coupled
equations in terms of laminate properties and some experimental data from laminated
rings with two lamina.

With the exception of Bhimaraddi (Ref. 25), the author knows of no research di-
rected at the vibrational response of curved composite beams. Further, there seems to
be a dramatic lack of experimental data for curved beams of any cross section or mate-

rial system. This research will help to fill these voids.

Statics

The static portion of the literature review will be limited to those papers which
specifically address thin-walled curved beams or have an important bearing on this re-
search. Though much work preceded Timoshenko’s series of papers (Ref. 13) on thin-
walled beams, his work unified the existing engineering theories on the bending, torsion,
and buckling of beams with thin-walled open cross sections. He presented new develop-
ments such as the concepts of warping, shear center, and torsion center. His papers ad-
dress thin-walled beams in a very thorough manner, though he does not treat curved

beams.
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Vlasov (Ref. 23) derived a beam theory for thin-walled beams including the effects
of curvature. This represents the first detailed discussion of curved thin-walled beams.
Vlasov included the effects of warping and rotatory inertia. He restricted his attention
to thin rings facilitating the neglect of transverse shear deformation and shear center
eccentricities. He also assumed that the cross section is infinitely rigid in its own plane.
Gijelsvik (Ref. 26) presents Vlasov’s theory in more modern terminology though it does
not include the material on curved beams.

Bauld and Tzeng (Ref. 27) extended Vlasov’s theory to account for anisotropic
material properties common in laminated composites.” This theory uses modulus
weighted section properties to account for stiffness variations through the thickness of
the walls. This theory assumes that all the branches are midplane symmetric and the
beams are straight. Though the theory was developed for straight beams, it could be
extended to include curved beams. Lo (Ref. 28) used this theory in his analysis of
flexural-torsional buckling of laminated composite columns.

Mabson (Ref. 29) discusses some of the differences between isotropic and composite
curved thin-walled beams. Mabson shows that composite cross sections are more sus-
ceptible to flexural deformations than isotropic cross sections. This indicates that com-
posite beams may be more likely to violate the assumption that the cross section is
infinitely rigid within its own plane. Mabson suggests a way of calculating effective
cross-sectional stiffnesses for composite laminated beams of various cross sections.

Tralli (Ref. 30) and Noor (Ref. 7) have both used hybrid finite elements to evaluate
the static response of thin-walled structures. Tralli’s approach addresses only straight
beams, but will handle closed as well as open sections. While Tralli’s program is limited
to static analysis, Noor’s finite element was also developed for the free-vibrational
analysis of curved thin-walled beams. Noor’s program is used extensively in this re-

search and will be discussed more thoroughly in Chapter 5.
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Summary

Having attempted to provide some of the background and motivation for this study,
the remaining material will be devoted to describing the research. The test specimen’s
manufacture, material system, and dimensions are discussed in Chapter 2. The exper-
imental apparatus and test procedures are presented in Chapter 3. The experimental
results are presented in Chapter 4. The analytical effort is outlined in Chapter 5. Cor-
relation of experimental and numerical results comprise Chapter 6. Concluding remarks

and recommendations for future work are presented in Chapter 7.
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Chapter 2

Test Specimens

Design and Fabrication

Conventional aircraft designs use thin-walled frames and beams to build the skele-
ton of a fuselage. The test specimens for this research are intended to represent fuselage
frames. Two semi-circular frames were tested, a symmetric I-section and an asymmetric
channel section. The cross-sectional shapes are shown in Fig. 5. Channel and I-sections
are commonly used in conventional aircraft designs and provide the opportunity to in-
vestigate the effect of symmetry. In tests of composite fuselage subsections (Ref. 6), it
was found that the skin substantially strengthened and stabilized the subsections. This
motivated the addition of a thick layer of “skin’ to the outside of each frame. The layer
of “skin” is intended to simulate the out-of-plane stabilizing effect of the fuselage skin.

The test specimens were fabricated wusing AS4/5208, graphite/epoxy,
preimpregnated, unidirectional, tape. The tape was manufactured by Narmco and the

specimens were laid up by Bell Textron. The nominal material properties for AS4/5208
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are presented in Table 1. The specimens were laid up using a quasi-isotropic sequence
following the schematic in Fig. 6. The speciﬁéd angles are measured with respect to the
circumferential axis of the specimen. The layup in the 8 ply cap flanges is (+45/0/90)..
The layup for the 16 ply skin is (+45/0/90),. In the region where the attachment flanges
are bonded to the skin, the 24 ply layup is
(£45/0/90/90/0/F45/+45/0/90/1+-45/0/90/90/0/F45/90/0/F-45); . Although this layup is
asymmetric, a classical analysis of this region shows that the coupling terms are negligi-
ble. The web of the channel specimen has the same layup as the cap flanges, but the web
of the I-specimen has an anti-symmetric layup (£45/0/90/90/0/+45);, resulting in sig-
nificant extension-bending coupling terms. It will be evident from the data in subsequent
chapters, that the anti-symmetric layup in the web of the I-section specimen did not

adversely effect its symmetric response.

Table 1. Nominal material properties for AS4/5208 from Narmco

Property Value
Longitudinal Modulus E, 18.40 x 10° psi
Transverse Modulus E, 1.64 x 10 psi
Transverse Modulus Eq 1.64 x 10° psi
In-plane Shear Modulus Gy, 0.87 x 106 psi
Transverse Shear Modulus Gy, 0.87 x 10¢ pst
Transverse Shear Modulus Gy 0.49 x 10¢ psi
In-plane Poisson Ratio Vi, 0.30
Transverse Poisson Ratio Vi3 0.30
Transverse Poisson Ratio Vs 0.35
Lamina Thickness 1 0.0055 in
Material Mass Density P 1.80 x 103 (Ib-sec?)/(ft-in3)

The nominal dimensions of the test specimens are shown in Fig. 7. The diameter
of the frames is 72 inches and the cross-sectional heights are about 1.5 inches. This ge-
ometry places the frames in the category of thin rings. The effects of rotatory inertia and

transverse shear typically have little effect on the response of thin rings.
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Figure 7. Specimen dimensions: The radial and cross-sectional dimensions of the tests specimens are
presented in two views,
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Specimen Characterization

The results of an ultrasonic inspection of the web of the channel specimen is shown
in Fig. 8. The white patches indicate regions which may be damaged or substandard,
raising questions about the consistency of the stiffness properties with respect to cir-
cumference. Subsequent tests were designed to investigate this concern. After the static
and dynamic tests were completed, the I-section specimen was instrumented for a crush
test and the channel specimen was cut into five ring segments for further evaluation.
Four of the segments were tested in three point bending to determine if the bending
stiffness was constant with respect to circumference. These specimens had a uniform arc
of about forty degrees. The fifth ring segment was cut into tensile and shear coupons for

material characterization tests.

The three point bend test configuration is shown in Fig. 9. The ring segments were
supported at their ends across a span of eighteen inches. The segments were loaded
radially by hanging twenty pound calibration weights from the center of the segments.
A load fixture was used to apply the load to the segments such that the segments did
not twist. The displacements were measured using dial indicators. Each specimen was
tested five times and the resulting data was averaged. The results of the tests are pre-
sented in Fig. 10. The load displacement curves for the four segments are very consist-
ent. The slope of the lines fall within 43 % of the average slope. These results negated
much of the concern about circumferential stiffness nonuniformity suggested by the
ultrasound scan.

The last segment was cut into two tensile and three shear coupons for material

characterization tests. The coupon tests were intended to confirm the effective moduli
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10N specimen.

The figure shows the results of an ultrasound scan of the web of the channel sect

White patches indicate regions which may be damaged or substandard.

Figure 8. Ultrasound scan of the channel specimen
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Figure 10. Load-displacement data from three-point bend tests: The plot shows the load versus dis-
placement plot for the four segments cut from the channel specimen. The slopes of the lines
are very consistent indicating consistent bending stiffnesses.
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(E, and G,,) calculated from classical lamination theory and nominal material proper-
ties.

The shear coupons were cut from the web of the section since those coupons had
to be flat. The losipescu shear test was chosen because of the size limitations on the
shear coupons. The shear coupons were cut according to the dimensions specified by
Pindera, et al. (Ref. 31). The coupons were instrumented with a three arm rectangular
rosette (electrical resistance foil gages) which had a gage length of two millimeters. The
results of the shear tests are presented in Fig. 11. The tests gave consistent values for the
shear modulus, but the coupons did not fail in shear because of the quasi-isotropic

layup. The laminates failed by edge brooming in the 90° layers at the contact points.

Two tension coupons, six inches by 5/8 inches, were cut from the cap flange of the
channel specimen. The initial geometry is curved, but the eight ply quasi-isotropic layup
is sufficiently flexible that the initial curvature has little effect on the test. The coupons
were instrumented with a three arm rectangular rosette on one side and a uniaxial gage
on the other side for bending correction. The two tension tests gave nearly identical re-
sults for the extensional modulus E,, and failure strain. The stress versus strain plots for
the two tensile tests are shown in Fig. 12. The failure strain in the tension tests was

about 1 % for both coupons.

The results of the material characterization tests are summarized in Table 2. The
experimental values for E, and G,, compared well with the analytical predictions from
classical lamination theory. The discrepancy in the extensional modulus was less than 1
%. The discrepancy in the shear modulus was about 8 %. The experimentally deter-

mined stiffness properties were used in all of the analyses for both the channel section

and the I-section specimens.
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Figure 11. [Iosipescu shear test results: The plot shows the shear stress versus shear strain results for
the three iosipescu shear coupons cut from the web of the channel specimen.
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Figure 12. Tension test results: The plot shows the stress versus strain results for the two tensile
coupons cut from the cap flange of the channel specimen.
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Table 2. Engineering constants from quasi-isotropic coupon tests

Property Experimental Analytical Error?
Extensional Modulus E. 7.361 x 10° psi 7.423 x 108 psi 0.84 %
In-plane shear modulus Gy 2.655 x 10¢ psi 2.862 x 10¢ psi 7.79 %

2 (Analysis - Exp)/Exp x 100
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Chapter 3

Experimental Apparatus and Tests

The experimental scope of this research includes both dynamic and static tests. The
dynamic portion of the experimental program employs several test methods to obtain
the natural frequencies and the associated mode shapes. The static phase of the research
program involves subjecting the specimens to combined loads at the midspan and
measuring the resulting displacements at the midspan. After the dynamic and static tests
were completed, the I-section specimen was instrumented with strain gages and prepared
for a quasi-static crush test. The experimental apparatus and test procedure for each
type of test will be discussed independently. The dynamic tests will be discussed first

followed by the static tests and the crush test.
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Dynamic Tests

This section presents the experimental apparatus and procedures involved in the
dynamic tests. The first set of tests were run with free-free boundary conditions and used
an air shaker to excite the specimens. After these tests, the ends of the specimens were
secured in aluminum end fixtures using Hysol 934 potting compound. The remaining
tests were run with clamped-clamped boundary conditions. Each set of tests involved
exciting the specimens radially and laterally in order to excite both in-plane and out-of-
plane modes. The tests are differentiated by the boundary conditions used. The free-free

frame tests will be discussed first followed by the clamped-clamped frame tests.

Free-Free Frame Tests

The free-free frame tests were conducted using the facilities at the Landing and Im-
pact Dynamics Branch at NASA Langley Research Center. The experime_ntal setup for
the free-free air shaker tests is shown in Fig. 13. The specimens were hung by elastic
bands at two points to emulate free-free boundary conditions. These tests used an air
shaker to excite the specimens with pulses of compressed air. The frequency and mag-
nitude of the excitation were variable. The air shaker was a portable unit that required
no physical attachment to the specimens. Thus, the air shaker could be oriented in dif-
ferent directions to excite both in-plane and out-of-plane modes.

The response of the specimens was monitored with a hand held velocity probe. The
response signal from the probe was monitored visually on an oscilloscope. The probe
detected in-plane motion when oriented radially and out-of-plane motion when oriented

perpendicular to the plane of the frame. A natural frequency was isolated when the
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oscilloscope displayed a strong, clean, constant sinusoidal signal. A natural frequency
was tuned in much the same way that a radio station is tuned in. Once a natural fre-
quency was isolated, a strobe light was used to to determine the frequency of excitation.
The specimen was excited at that frequency while the mode shape was studied and the
nodes located. The frequencies for the rigid body modes were much lower than the fre-
quency of the first vibrational mode indicating that the boundary conditions were
achieved satisfactorily. The rigid body modes include in-plane and out-of-plane pendu-

lum and rotational modes.

Clamped-Clamped Frame Tests

The clamped-clamped frame tests were conducted using the facilities in the Depart-
ment of Aerospace and Ocean Engineering at Virginia Polytechnic Institute and State
University. The objectives of these tests were to determine the natural frequencies and
node locations of the clamped-clamped resonant modes and to obtain information on
the dynamic response of the frames over a range of frequencies in the form of frequency
response plots. A structural analyzer was used to generate the frequency response plots.
Based on the frequency response plots, a signal generator was used to excite the indi-

vidual modes enabling the location of the nodal positions to be determined.

The clamped-clamped tests used a Synergistic Technology Incorporated (STI)
model 11/23 structural analyzer to generate the excitation signal and process the re-
sponse data. The structural analyzer employs two interacting software packages set up
on a VAX minicomputer to control the excitation signal and to collect and process the
data. A flowchart of the test procedure is presented in Fig. 14. The excitation signal is

routed through an amplifier to an electromagnetic shaker. The electromagnetic shaker
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Figure 14. Structural analyzer test flowchart: The structural analyzer collected force and response
data from the force gage and proximity probes. Fast Fourier Transforms of the force and
response data were calculated. Output displacement was divided by input force and plotted

on a log scale versus frequency in the form of frequency response plots.
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1is attached to the specimen via a sting and a piezoelectric force gage. The force gage
monitors the amplitude and frequency of the input force and sends this information to
the structural analyzer. The response of the frame is detected by Bently-Nevada non-
contacting magnetic proximity probes which measure the displacement of small mag-
netic targets. A typical arrangement of the electromagnetic shaker, force gage, and a
proximity probe is presented in Fig. 15.

The operator prescribes a frequency range and step size for a given test. The struc-
tural analyzer sweeps through the frequency range, exciting the specimen at cach fre-
quency for fifty cycles and samples data from the force gage and proximity probes. The
structural analyzer calculates Fast Fourier Transforms (FFT’s) of the collected force and
displacement data, divides displacement FFT by the force FFT and plots this ratio on

a log scale versus frequency in hertz.

The force actuator and proximity probes were oriented in different directions in or-
der to excite and detect both in-plane and out-of-plane modes, respectively. The radial
orientations for the force actuator and proximity probes are shown in Fig. 15. The out-
of-plane orientations for the shaker and proximity probes are shown in Figs. 16 and 17.
The specimens were clamped to a massive steel structure using C-clamps in an effort to
obtain clamped-clamped boundary conditions. The steel structure was shimmed and
leveled to provide a stable test platform. The shaker and the proximity probes were hung

from separate steel structures isolating them from the test specimen.

The structural analyzer results are presented in the form of frequency response plots
and phase angle diagrams. A plot was generated for each probe in each test. The plots
for an in-plane test of the I-section specimen are shown in Fig. 18. Spikes in the fre-
quency response plots, accompanied by shifts in the phase diagram, indicate resonant

modes. The structural analyzer tests provided excellent values for the natural frequencies
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ty probes are used to detect radial and lateral motion.

imi

Figure 17. Experimental apparatus for clamped-clamped dynamic tests: Two prox
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of the resonant modes, however, the test procedure made it impossible to study the mode
shapes of the modes associated with the spikes. It is impossible to identify the type of
mode or the nodal locations from the structural analyzer test data. A signal generator

was used to identify the modes and locate nodal positions.

The signal generator was used to excite the specimens at the frequencies corre-
sponding to the spikes in the frequency response plots. The signal generator sent the
signal to the electromagnetic shaker which excited the specimen. The signal from the
force gage was not monitored during these tests. The response signals from the proximity
probes were monitored visually one at a time on an oscilloscope. The mode was tuned
in by monitoring the response signals on the oscilloscope and adjusting the frequency
of excitation similar to the air shaker tests. Once a mode was isolated it could .be excited

indefinitely enabling mode identification and the location of nodal positions.

Static Tests

This section discusses the test apparatus and procedures used in the static portion
of the experimental program. The objective of these tests was to determine the flexibility
matrices which relate radial, lateral, and twist displacements (W,V,¢) to the radial, lat-
eral, and torsional loads (P,Q,T) at the midspan of the test specimens.  The

displacement-load relation is

LY

W 1 Oy %3 p
{V} = | % %y ay {Q} (3.1)
¢ O31 O3y 033 T
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where oy are the flexibility influence coefficients.

Two sets of static tests were necessary to generate all of the flexibility influence co-
efficients. The in-plane tests loaded the specimen with a radial force and a torque, thus
facilitating calculation of the first and third columns of the flexibility matrix. The out-
of-plane tests loaded the frames with a lateral load and a torque, enabling the calculation
of the second and third columns. In both sets of tests, the frames were clamped to a
massive steel structure which was shimmed and leveled to provide a consistent test
platform. The in-plane static tests will be discussed first followed by the out-of-plane

tests.

In-Plane Static Tests

The in-plane static tests generated a radial load by hanging twenty pound cali-
bration weights from the specimens using a load fixture attached to the specimen. The
load fixture and the coordinate system are shown schematically in Fig. 19. The weights
were hung from a steel cable which was positioned between two nuts on a threaded rod.
By moving the nuts along the threaded rod, the load could be traversed across the cross
section, thus changing the torque applied to the cross section. The torque for each test
is the product of the radial load (P) and the moment arm (D). The moment arm is the
distance along the threaded rod from the load application point to some point of refer-
ence where the torque is taken to be zero. It is convenient to define this point of refer-
ence as the point where a radial load causes no tWist_ and no lateral deformation. This
point is analogous to the shear center of a straight beam.

Photographs of the load fixture and the in-plane static test apparatus are shown in

Figs. 20 and 21, respectively. Displacement measurements were taken at the midspan

Experimental Apparatus and Tests 39



@ Y

[ [y,

T=P-D

Load fixture and Coordinate system: The load fixture applied radial, and torsional loads
to the specimen. The applied torque was the product of the radial load (P) and the moment
arm (D). Radial (W), lateral (V), and twist (¢) deformations were measured with respect
to the centroidal coordinate system shown.

Figure 19.
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using dial indicators which have a range of one inch and a resolution of .0005 inches.
Two dial indicators were oriented radially on top of the load fixture and a third was
oriented laterally on the side of the load fixture. Assuming that the cross section of the
test specimen and the load fixture move as a rigid body, three measurements are suffi-
cient to define the deformed position of a body moving in a plane. The data from the
dial indicators were resolved into lateral and radial displacements of the centroid and the
twist of the cross section. The data reduction scheme used to obtain the centroidal dis-
placements and a sample of the reduced data are presented in Appendix B. The dial in-
dicators were attached to separate steel frames isolating them from the specimens.
Readings were taken each time a weight was loaded or unloaded and the values were

averaged. The frames were loaded radially to 120 pounds.

For the in-plane static tests, the displacement-load relationship reduces to the fol-
lowing equation because the lateral load (Q) is assumed zero. Thus, the middle column,

01z O, and ay, , cannot be calculated from the in-plane tests.

W 0y %3

P
{V} = %1 %23 {1} (3.2)
¢ 31 033

The nonlinearities of this problem are most prevalent when the frames bend out of
plane. In order to minimize the nonlinear response, the maximum loads were selected
such that the maximum lateral displacement was limited to one half inch. This limitation
effectively dictated the maximum allowable torque since the maximum radial load was
already set. The torque is the product of the radial load and moment arm, thus the mo-

ment arm was adjusted to keep the lateral displacement within the allowed limit.
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The point of zero twist marked the center of the test range for each specimen. Since
the I-section specimen was stiffer then the channel specimen with respect to torsion, the
maximum moment arm for the I-specimen was correspondingly larger resulting in a
larger test range. Many tests were run with the load application point traversing through
the test range subjecting the tests specimens to positive and negative torques. The re-
sults of the static tests were plotted as load versus displacement for various values of the

moment arm. The flexibility influence coeflicients were calculated from this data.

Out of Plane Static Tests

The out-of-plane tests required slight changes in the test apparatus and procedures.
The out-of-plane tests involved loading the specimens with a lateral load and a torque.
The load fixture was modified (Fig. 22) so that loads could be applied perpendicular to
the plane of the frame. The load fixture had a tendency to pull away from the test
specimen requiring the load fixture to be tied to the specimen, thus, forcing the load
fixture and the test specimen to deform as a rigid body. The frames are very compliant
laterally requiring smaller loads to reach the limiting lateral displacement. The moment

arm reference points for the out-of-plane tests were chosen as the centroid of the cross

sections.

Photographs of the modified load fixture and the test apparatus for the out-of-
plane static tests are shown in Figs. 23 and 24, respectively. Calibration weights were
hung from a piece of twine which was routed over a pulley and attached to the load
fixture. The load application point was changed by traversing two nuts along a threaded

rod similar to the in-plane tests. Changing the load application point effectively changed
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the relative torque applied to the specimen. The pulley was mounted on a traverse so

that the twine could be kept level, thus, keeping the load perpendicular to the frame.

For the out-of-plane static tests, the displacement-load relationship reduces to the

following equation because the radial load (P) is assumed zero.

W oy O3
Q

{V} = | o0y O3 { } (3.3)
T

¢ 032 %33

Thus, the first column, a,,, &, and oy , cannot be calculated from the out-of-plane tests.
The torque (T) is the product of the lateral load (Q) and the moment arm (D). Three
dial indicators were used to measure the displacements of the specimen at the midspan.
The dial indicators were arranged in the same manner as in the in-plane tests, thus, the
same data reduction scheme was used.

Maximum lateral loads of 4.5 and 2.3 pounds were used for the I-section and
channel section specimens, respectively. Readings were taken from the dial indicators
each time a weight was loaded or unloaded. The resulting data was then averaged. After
each test the moment arm was incremented by one-eighteenth of an inch (one turn on
threaded rod) and the procedure was repeated. The test range for the out-of-plane tests

was larger than the test range in the in-plane tests, but the loads were much smaller

yielding smaller torques.
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Figure 24. Out of plane test apparatus: Load path for the out-of-plane tests. The load was applied perpendicular to the frame by hanging weights
from a line looped over a pulley.
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Crush Test

The crush test is part of the ensuing phase of this research and only has a tangential
application to this study.! The objective of the crush test was to obtain experimental
data on the large deflection, failure, and post failure responses of the frame. To obtain
this data, the I-section specimen was loaded radially through successive failure events.
The current research is only concerned with the linear small deflection response of the
frame, however, since the crush test loading is similar to the in-plane static tests, the

crush test provided a second opportunity to determine the flexibility coefficient ;.

A photograph of the test apparatus is shown in Fig. 25. The frame was restrained
from deforming laterally or twisting at the midspan and the potted ends were bolted to
an I-beam to simulate clamped-clamped boundary conditions. The crush test was
slightly different from the in-plane static tests where the midspan was unrestrained and
the potted ends were clamped to the I-beam. The frame was instrumented with strain
gages to measure the strain distribution. A string potentiometer was used to measure the
radial displacement. A Tinius-Olsen test machine was used to apply the load. For the

midspan restrained specimen, the displacement-load relation is

W Oy Gy g3 p
{0} = | G21 G %3 {Q} (3.4)
0 031 ®33 0O33 T

where V and ¢ have been restrained and Q and T are not necessarily zero. Thus, if

a,, and o, are sufficiently small the radial displacement is simply the product of the ra-

! The static crush test was conducted at Virginia Tech in cooperation with Mr. E. Moas, graduate research
assistant, and Professor O. H. Griffin. This project is also supported by the Landing and Impact Dy-
namics Branch, NASA Langley Research Center.
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dial load and a,,. The flexibility coefficient a,, was obtained directly from the load-

displacement plot.
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Chapter 4

Experimental Results

Data from the dynamic testing is presented first followed by the static test data. The
dynamic test data includes the natural frequencies and node locations of the specimens
for free-free and clamped-clamped boundary conditions. The static test data is presented

in plots of load versus displacement. The flexibility influence coefficients were calculated

from this data.

Dynamic Test Data

In general, the vibrational response of the frames can be divided into in-plane and
out-of-plane motion. The vibrational response of the I-specimen completely decouples
into in-plane and out-of-plane modes. All the modes of the channel specimen exhibit
coupling between in-plane and out-of-plane motions, but the modes were clearly domi-

nated by one type of motion. The photograph in Fig. 26 is representative of the coupled

Experimental Results 52



response observed in the modes of the channel section specimen. The photograph shows
the first free-free in-plane flexure mode of the channel specimen. Though the cross sec-
tion experiences some lateral and twisting motion, the dominant motion is radial. The
photograph in Fig. 27 shows a pure out-of-plane motion indicative of the uncoupled
response displayed by the I-section specimen. The photographs in Figs. 26 and 27 were
taken during the {ree-free vibrational tests using a strobe light which was tuned to twice
the excitation frequency. Using this technique the cross section was illuminated at either

extreme of the motion, thus, capturing the characteristic motion of that mode.

A mode was identified by two characteristics, the dominant motion and the number
of nodes in the mode shape. The nodes of an in-plane mode are defined as those points
where the radial motion is nearly zero. This does not mean that the out-of-plane dis-
placement is zero there, though in general it is small too. Likewise, the nodes of an
out-of-plane mode are defined as those points where the out-of-plane bending and
twisting motions are nearly zero.

Three distinct types of modes were observed in the free-free vibrational tests,
whereas only two types of modes were observed in the clamped-clamped tests. For the
free-free tests, motions associated with in-plane bending, out-of-plane bending, and
torsion were observed at different frequencies. For the clamped-clamped tests, motions
associated with in-plane bending and coupled out-of-plane bending and torsion were
observed at different frequencies. Clamped end conditions caused a stronger coupling
between out-of-plane bending and torsion than is present in the free end case. For either
end condition, the initial curvature of the specimens statically couples the out-of-plane
bending moment and the torque. However, the magnitudes of these actions are likely to
be much less for the free-free case than for the clamped-clamped case. This may be the

reason for the relatively uncoupled motions associated with out-of-plane bending and
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torsion observed in the free-free tests. For example, out-of-plane bending dominates the
motion in the mode at 26.3 Hz for the free-free I-specimen shown in Fig. 27. The same
I-specimen vibrating at 57.2 Hz, as shown in the photograph in Fig. 28, exhibits a

torsionally dominant motion.

Natural frequencies and node locations for the free-free in-plane, out-of-plane, and
torsional modes for both specimens are presented in Table 3. The natural {requencies
are in hertz and the node locations are measured in radians from the midspan. The node
locations are symmetrically located about the midspan. The plot in Fig. 29 compares the
in-plane, out-of-plane, and torsional natural frequencies of the two specimens. The
number of nodes is plotted on the horizontal axis and the natural frequency is in hertz
on the vertical axis. The frequencies associated with the in-plane modes of the I-
specimen are higher than the frequencies associated with the in-plane modes of the
channel specimen. This indicates that the I-specimen is stiffer radially. The data for the
two specimens show increasing frequencies with increasing number of nodes in the
modes. The in-plane natural frequencies for the channel specimen are consistently 15-25
% lower than the corresponding I-specimen frequencies. The curves in Fig. 29 (B) cor-
respond to the natural frequencies of the out-of-plane {lexure and torsional modes of
both test specimens. The torsional natural frequencies associated with the [-specimen
are consistently higher than the corresponding channel modes indicating that the I-
specimen is stiffer with respect to torsion. The natural frequencies for the out-of-plane
flexural modes for the two specimens coincide.

The results of the clamped-clamped vibrational tests for the I-section and channel
section specimens are presented in Table 4. The frequencies are in hertz and the node
locations are in radians measured from the midspan. The clamped ends are counted as

two nodes. Thus, two nodes is the minimum number in a mode for the clamped-clamped
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Table 3. Natural frequencies and node locations of the free-free modes

No. of Freq Node Locations
Nodes Hz Radians from Midspan
I-specimen
In-plane 2 25.8 -0.61 0.63
3 78.3 -1.09  -0.02 1.05
4 151.0 -1.22 -043 043 1.23
5 259.0 -1.30 -0.70 -0.01 066 1.29
6 388.0
Out-of-plane 3 8.1 -1.16  0.02 116
4 26.3 -1.30  -0.48 0.48 1.28
Torsion 3 57.2 -0.75  0.02 072
4 97.5 -0.98  -0.30 0.30  0.95
5 146.0 -1.08 -0.51 001 053 108
6 200.0 -1.23  -0.92  -0.29 029 087 1.20
Channel specimen
In-plane 2 18.4 -0.65 0.59
3 65.0 -1.10  -0.00  I1.11
4 128.0 -1.22 -0.49 051 1.23
5 205.0 -1.31 -0.75  0.01 075 132
6 280.0
Out-of-plane 3 7.4 -1.14  -0.01 1.15
4 26.1 -1.28 -045 0.46  1.30
Torsion 3 473 -1.67  0.02 101
4 87.5 -1.19  -047 0.44 1.16
5 137.0 -1.20  -0.68 001 066 118
6 188.0 -1.23 -0982 -0.29 0.29 0.87 1.20
58
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Figure 29. Comparison of free-free natural frequencies: The in-plane and out-of-plane natural fre-
quencies for both test specimens are shown in the two plots. The number of nodes in a
mode is plotted on the horizontal axis and natural frequency in hertz on the vertical axis.
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Table 4. Natural frequencies and node locations of the clamped-clamped modes

No. of Freq Node Locations
Nodes Hz Radians from Midspan
I-specimen
In-plane 3 57.8 -1.57 0.00 1.57
4 127.2 -1.57 -0.57 0.58 1.57
5 233.0 -1.57 -0.72 0.00 0.75 1.57
6 350.6 -1.57 -0.94 -0.26 028 094 1.57
7 490.2 -1.57 -1.01 -049 -0.01 048 101 1.57
8 617.3
Out-of-plane 2 8.2 -1.57 1.57
3 29.8 -1.57 -0.04 1.57
4 64.3 -1.57 -0.34 049 157
5 110.4 -1.57 -0.62 -0.01 0.58 1.57
6 157.8 -1.57 -0.85 -0.28 0.25 0.88 1.57
7 164.7 -1.57 -1.02 -042* 0.08 0.54 1.08 157
8 2074 -1.57 -1.23 -0.74 -0.24 022 073 120 1.57
9 2547 -1.57 -1.28 -0.80 -0.37 0.07 043 085 131 157
10 3147
Channel specimen
In-plane 3 44.6 -1.57 -0.01 1.57
4 99.1 -1.57 -0.58 0.61 1.57
5 176.0 -1.57 -0.84 -0.14 0.82 1.57
6 276.7 -1.57 -0.98 -0.29 028 094 1.57
7 413.0
Out-of-plane 2 7.4 -1.57 1.57
3 254 -1.57  0.09 1.57
4 55.4 -1.57 -0.40 035 1.57
5 91.1 -1.57 -0.60 -0.05 0.60 1.57
6 148.8 -1.57 -0.85 -0.28 0.27 083 157
7 155.2 -1.57 -1.00 -0.29 -0.01 035 090 1.57
8 187.7 -1.57 -1.26 -0.76 -0.26 025 076 126 157
9 216.0 -1.57 -1.26 -0.84 -0.37 0.06 037 072 120 1.57
10 265.0
a Node near the force actuator
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specimen tests. In general, the nodes are distributed symmetrically about the midspan
except when a node falls close to the force actuator, which tends to distort the mode

shape.

The in-plane and out-of-plane natural frequencies for both specimens are compared
in Fig. 30. The response of the two specimens is qualitatively the same. The in-plane
natural frequencies of the I-specimen are consistently higher. The first out-of-plane
mode for the two specimens is nearly identical, which is similar to the coincident out-
of-plane flexural modes observed for the two specimens in the free-free tests. The natural
frequencies of the I-specimen for subsequent out-of-plane modes are higher than the
corresponding channel specimen frequencies. The reduction of the increase in frequency
with increasing number of nodes in Fig. 30 (B) at six nodes is explained by a softening

of the end restraint conditions.

Static Test Data

The experimental data from the static tests is presented in plots of load versus dis-
placement. The flexibility influence coefficients were calculated using a least squares
routine which fitted the best plane to the data. The load-displacement plots will be dis-
cussed first followed by the data reduction scheme and the flexibility influence coeffi-

cients.
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Figure 30. Comparison of clamped-clamped natural frequencies: The in-plane and out-of-plane na-
tural frequencies for both specimens are compared in the two plots. The number of nodes
in a mode is plotted on the horizontal axis and natural frequency in hertz on the vertical

axis.
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Load-Displacement Plots

In the ensuing presentation of the load-displacement plots, each figure will present
the data for both specimens. The data associated with the I-specimen will be presented
in the (A) part of each figure and the data for the channel specimen will be presented in
the (B) part. The data from the in-plane static tests will be plotted as radial load versus
radial, lateral, and twist displacements for various values of the moment arm. The out-
of-plane static test data will be presented as lateral load versus radial, lateral, and twist
displacements for various values of the moment arm. The applied torque in ecither test
is the product of the applied force and the moment arm. The in-plane test data will be
presented first followed by the out-of-plane test data.

The plots of radial load versus radial displacement are presented in Fig. 31. The I-
specimen data is linear through the maximum radial load and shows no sensitivity to the
applied torque. This indicates that the flexibility coeflicient a,, is small. The channel
specimen data is linear through a radial load of sixty p;)unds. The spread in the curves
for the channel specimen indicates that the channel specimen’s flexibility coefficient o,

is not zero.

The plots of radial load versus lateral displacement are shown in Fig. 32. The I-
specimen data is symmetrically arranged about the zero torque line (D=0). The fan
shape indicates that the flexibility coefficient a,, is nonzero. Nonlinearities appear in
some of the curves, but the data corresponding to smaller moment arms is linear through
a radial load of sixty pounds. The channel specimen data is not symmetrically arranged
about the zero torque line. This indicates that the channel specimen’s value for flexibility
coeflicient a,; is dependent on the sign of the torque. The curvature in the data for the

channel specimen is more pronounced than in the I-specimen data.
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Figure 31. Radial load versus radial displacement: Radial displacement in inches is plotted on the
horizontal axis and radial load in pounds on the vertical. The I-section data is linear and
insensitive to torque. The channel specimen exhibits nonlinear response and a sensitivity

to torque.
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rically arranged about the zero torque line. The channel data is not symmetrically arranged
indicating «,; is dependent on the sign of the torque.
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Radial load versus twist displacement: Twist displacement in radians is plotted on the
horizontal axis and radial load in pounds on the vertical. The l-section data is symmet-
rically arranged about the zero torque line. The channel data is not symmetrically arranged
indicating a4, i5 dependent on the sign of the torque.
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The plots of radial load versus twist are presented in Fig. 33. The I-specimen data
is symmetrically arranged about the zero torque line indicating a consistent value for
flexibility coeflicient ay. Generally, the data is linear through the highest radial load.
The data for the channel specimen is not symmetrically arranged indicating that the
channel’s torsional stiffness a,; is dependent on the sign of the torque. The curves are
linear through a radial load of sixty pounds.

The plots of lateral load versus radial displacement from the out-of-plane static tests
are presented in Fig. 34. The I-specimen data shows significant radial displacements in-
dicating that the flexibility coefficient o, is nonzero. This is inconsistent with the
vibrational experimental data since a nonzero value of «,, couples the in-plane and out-
of-plane responses. This inconsistency of a nonzero «,, is thought to be due to a ge-
ometric nonlinear effect of the reference arc of the frame. For inextensional response,
an out-of-plane displacement in either direction at midspan would cause a radially in-
ward displacement. This is analogous to a cantilevered beam subject to a transverse load
in which the axial displacement at the tip is directed inward no matter the sense of the
applied load. The radial displacement for the channel specimen is also nonzero. It is
difficult to say how much of the radial deformation is a function of the geometric non-

linearity and how much is due to the coupling caused by the asymmetric cross section.

Plots of lateral load versus lateral and twist displacements are presented in Figs. 35
and 36, respectively. The I-specimen data for the two figures is linear through the max-
imum lateral load. The data for the channel specimen exhibits very slight curvature.

The in-plane and out-of-plane static tests were necessary to generate all thrée col-
umns of the flexibility matrix. The frames are stiffer in the radial direction enabling

higher loads, hence larger torques. The smaller torques in the out-of-plane tests resulted
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Figure 34. Lateral load versus radial displacement: Radial displacement in inches is plotted on the
horizontal axis and lateral load in pounds on the vertical. The I-section data is nonlinear
and nonzero which is inconsistent with previous observations. Channel data is linear and

shows substantial radial displacements.
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Figure 35. Lateral load versus lateral displacement: Lateral displacement in inches is plotted on the
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Figure 36. Lateral load versus twist displacement: Twist displacement in radians is plotted on the
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through a lateral load of three pounds. The channel data is slightly nonlinear.
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in smaller effects which were difficult to measure reliably. Thus, the data from the in-

plane tests is regarded as more reliable than the out-of-plane test data.

Data Reduction

For the in-plane tests, the load-displacement relations reduce to

W Oy Qg3
P

{V} = a21 0623 { } (4.1)
T

¢ 031 033

Many tests for different values of the radial load and moment arm yield an algebraically
overdetermined system. This situation occurs frequently in experimental research when
more data are generated than would be required if absolute precision was possible. If
such precision was possible, only two tests would be required to determine the flexibility
coeflicients.

The first of Egs. (4.1) can be interpreted as a plane in the W, P, T space. Similar
interpretations can be given to the second and third equations. The flexibility coeffi-
cients were calculated by fitting the best planes to the experimental data using a least
squares routine. The experimental data were treated in groups in order to better un-
derstand the response of the frames under different loads. The experimental data was
divided according to the value of the radial load and the algebraic sign of the torque.
Thus, flexibility coefficients were calculated for positive and negative torques for each
value of the radial load.

For the out-of-plane tests, the load-displacement relations reduce to
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W Oy %3

Q
{V} = | %2 %3 {} (4.2)
T

¢ 03y U33

Similar to the in-plane tests, repetitive tests yielded an algebraically overdetermined
system. The relations in The first of Eqs. (4.2) can be interpreted as a plane in the W,
Q, T space. Similar interpretations can be given to the second and third equations. The
flexibility coefficients were calculated by fitting the best plane to the experimental data
using a least squares routine. Flexibility coefficients were calculated for each value of
the lateral load.

In general, the in-plane tests measured the flexibility coefficients more consistently
than the out-of-plane tests, and the coefficients on the diagonal were measured more
consistently then the off-diagonal terms. With the exception of oy and oy, , the off-
diagonal terms were small in magnitude and had a significant amount of scatter associ-
ated with them. The «, terms are significant because of the coupling between
out-of-plane bending and torsion due to the curved geometry.

No attempt was made to force the flexibility matrix to be symmetric. Enforcing
symmetry in the flexibility matrix would substantially alter the values of the off-diagonal
coefficients. The curved frames loaded at the midspan present geometric nonlinearities
and the test data indicates this. Forcing the matrix to be symmetric would misrepresent

the data and therefore the response of the frames.

Flexibility Influence Coefficients
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The flexibility influence coefficients for the I-specimen from the in-plane tests are
presented in Table 5. Flexibility coefficients are presented for radial loads from 20 to 100
pounds for both positive and negative torques. The second column indicates the alge-
braic sign of the applied torque. In general, the flexibility coeficients for the I-specimen
were unaffected by the sign of the torque.

The values for the flexibility coefficient «,, get gradually smaller with increasing
value of the radial load indicating a stiffening in the response of the frame. The values
for flexibility coefficient ay; obtained for negative torques are slightly larger than the
values obtained for positive torques, however, the difference in magnitudes is small. The
values for flexibility coefficient o« become gradually larger with increasing radial load
indicating a slight softening in the measured response. The values for flexibility coefli-
cients o, 0, and o, are small and are inconsistently measured. Significant scatter in the
data associated with these coefficients make a reliable determination of their magnitudes
difficult. This indicates that their affect on the response of the frame is small. This is
consistent with the uncoupled vibrational response observed in the dynamic tests since
these coefficients couple the in-plane and out-of-plane static responses.

The flexibility influence coefficients for the channel specimen from the in-plane tests
are presented in Table 6. Flexibility coefficients are presented for radial loads from 20
to 100 pounds for both positive and negative torques. The values for flexibility coeffi-
cient a,, are consistent with respect to the algebraic sign of the applied torque and with
respect to the magnitude of the radial load. The values for ay, for the channel specimen
are roughly twice the magnitude of corresponding values for the I-specimen. The chan-
nel specimen does not exhibit the stiffening response observed in the I-specimen. The
values for flexibility coefficients oy, and ¢,; become steadily larger with increasing radial
load indicating a softening in the torsional resistance. Further, the values for ay and oy

obtained for negative torques are consistently smaller than values obtained for positive
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torques. This indicates that the torsional stiffness of the channel specimen is a function
of the algebraic sign of the torque. The values for flexibility coefficients a,; and o, differ
by two orders of magnitude and have opposite signs. The magnitudes of the values for
o, depend on the sign of the torque. The scatter associated with these values makes
reliable determination difficult. The values for flexibility coefficient o, are a function of
the sign of the applied torque and tend to get smaller with increasing value of the radial
load.

The flexibility coefficients for the I-specimen from the out-of-plane tests are pre-
sented in Table 7. Coefficients are presented for four values of the lateral load. The val-
ues for flexibility coefficient «,, are measured consistently for each value of the lateral
load. The values for flexibility coefficient o, are also measured consistently, however, the
values are about 20 % smaller than corresponding values obtained from the in-plane
tests. The values for flexibility coefficients o,; and o, are roughly the same magnitude,
however, their magnitudes are consistently 15-20 % smaller than the values for a,; ob-
tained from the in-plane tests. The values for flexibility coeflicient a,; are inconsistently
measured and the scatter associated with this coefficient is significant. The values for
flexibility coefficient «;, become steadily larger with increasing lateral load and are about
100 times larger than the values for &, obtained from the in-plane tests. As was discussed
previously, this is thought to be due to a geometrically nonlinear response similar to the
end shortening of a cantilevered straight beam.

The flexibility influence coefficients for the channel specimen from the out-of-plane
tests are presented in Table 8. Flexibility coeflicients are presented for three values of the
lateral load. The values for flexibility coefficient o,, are measured fairly consistently. The
magnitude of the values are roughly twice the magnitude of the corresponding values for
the I-specimen indicating that the channel specimen is twice as compliant laterally. The

values for flexibility coefficient oy, become smaller with increasing value of the lateral
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load. This trend is opposite to the trend observed in the values for the oy from the in-
plane tests. The values for oy from the out-of-plane tests are much smaller than the
values obtained from the in-plane tests. The values for flexibility coefficient o, are rela-
tively consistent and compare more favorably with corresponding values from the in-
plane tests. The values for oy, are about 60 % of the values for . The values for
flexibility coefficient «;, are measured consistently and are much larger than the values
for a, from the in-plane tests. It is believed that the larger values for o, is indicative of
a geometrically nonlinear response.

The values for a,; and a,; which were obtained from the out-of-plane tests are gen-
erally smaller than the corresponding values obtained from the in-plane tests. The fact
that the flexibility coefficients calculated from the two tests are not consistent is dis-
turbing. The out-of-plane tests used very small lateral loads and smaller torques. The
resulting displacements due to the torques were correspondingly smaller making them
more difficult to measure experimentally. Thus, the values for a, and a; obtained from

the in-plane static tests are considered more reliable.

Crush Test

The load displacement curve from the quasi-static crush test is presented in Fig. 37.
The slope of the curve is roughly linear through a radial load of 400 pounds. The inverse
of the slope in this region corresponds to ay,. The value for a;, from the crush test is
0.64 x 10~ inches per pound. This value is significantly smaller than the a;, value ob-
tained from the in-plane static tests. Thus, the crush test exhibits a stiffer radial re-
sponse. This discrepancy is likely due to the different boundary conditions. The

experimental boundary conditions for the crush test involved bolting the potted ends to
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Figure 37. Crush test load displacement plot:
the I-section specimen.
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Load versus radial displacement for the crush test of
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the I-beam where the static tests used clamps. It will be shown in the Chapter 6 that the
in-plane response is very sensitive to small changes in the boundary conditions.

The crush test was conducted as part of a related research effort by Mr. E. Moas,
Graduate Resecarch Assistant, and Professor O. H. Griffin that is sponsored by the
landing and Impact Dynamics Branch, NASA Langley Research Center. The failure and
post failure response of the frame will be addressed in detail by these researchers. The
failure of the frame will be presented here in an effort to be complete without benefit of
detailed analysis.

The initial failure event involved two simultaneous buckles in the web of the speci-
men. One buckle occurred at midspan and the other was located about eight inches to
one side. The buckles are shown in Fig. 38. The initial failure occurred at a radial load
of 1048 pounds. The strain in the region of the buckles at failure was significantly lower
than the anticipated material failure strain suggesting a local instability possibly

exacerbated by the unsymmetric layup in the web.
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Chapter 5

Analysis

Several structural analyses used to predict the linear static and vibrational response
of the curved composite test specimens are discussed in this chapter. The first section
traces the development of Vlasov’s thin-walled, curved beam theory. One-dimensional
continuum solutions for the decoupled in-plane and out-of-plane vibrational, and the
in-plane static responses, are presented. Finally, the finite element compAuter program
developed by Noor et al. (Ref. 7) is discussed. The finite element is based on a Vlasov-
type thin-walled curved beam theory and includes the additional effects of transverse
shear deformation and rotatory inertia. The finite element was developed specifically for

the analysis of curved thin-walled beams with open sections.
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Thin-Walled Curved Beam Theory

The thin-walled curved beam theory presented here was originally developed by
Vlasov (Ref. 23). Culver (Ref. 22) used Vlasov’s theory in his solution for the decoupled
out-of-plane vibrational response for a curved thin-walled beam with a doubly symmet-
ric cross section. Culver included the inertia terms by treating them as a periodic dis-
tributed static load. In this development, the strain energy relations are formed similar
to Vlasov and then the kinetic energy is derived in a manner consistent with the
kinematic assumptions and includes the inertial effects due to warping displacements.
Hamilton’s principle is used to obtain the differential equations of motion for a curved
beam with a single plane of symmetry coinciding with the plane of curvature. The the-
ory is extended by incorporating the constitutive relations of laminated composites into

the Hooke’s law expression.

Strain Energy

A ring segment is defined with respect to cylindrical coordinates (r,G,y) as shown in
Fig. 39. The radius measured from the origin O is written as r = a-z, where a is the radius
of the circle through the centroids of each cross section normal to the circumferential
direction, and z is a cross-sectional coordinate directed radially inward toward origin O.
Coordinate x is defined to be the arc length on the centroidal circle (x= af). At a generic
cross section, the orthogonal coordinates X, y, and z are defined by the right-hand-screw
rule. The cross section is assumed to be uniform along the circumference and to be
symmetric about the r-6 (or z-x) plane. Thus, the cross-sectional axes y and z are prin-

cipal centroidal axes of the cross section.
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Figure 39. Cylindrical and cross-sectional coordinates: The sketch shows a cylindrical coordinate

Analysis

system for a curved beam with the origin O at the center of the beam and a cross-sectional
coordinate system (x,y,z) at some generic point on the arc.
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Relative to the cross-sectional coordinate axes y and z, shell coordinates s and { are
defined to describe a thin-walled element of the curved beam. A contour line C is de-
fined that is at the middle of the wall thickness, and s is the arc length coordinate along
this contour. The contour is a continuous arc with a piecewise continuous tangent. The
tangent to the contour can jump at junctions between flanges and webs, for example.
The shell thickness coordinate ¢ is measured normal to the tangent of the contour at s;
(=0 on the contour, and [{| <h/2 , where h is the wall thickness. In general, h can be
a function of s. The positive directions of coordinates s and { are fixed by defining
(¢,s,0) as a right-handed orthogonal set of directions at a generic point in the shell space
as shown in Fig. 40. A material point in the wall of an element in the cross section lo-

cated at s and { is also described by coordinates y and z according to the relation

il

¥(s, §) = ¥(s) + {sine(s) (5.1)

2(s,{) = Z(s) — { cosa(s) (5.2)

in which ¥(s) and Z(s) are the coordinates of the contour C, and o is the angle between
the positive y-axis and the positive tangent direction on the contour at s. Angle « is
positive if measured counterclockwise when viewed down the positive 0-axis. On the

contour, the differential coordinates satisfy

&
=2 cosa = sina (5.3)

4z
ds ds
From Egs. (5.1-5.3) the following derivatives are obtained for later use

—%SSL = (1 + {/R) cosa -g—z— = (1 + {/Ry) sina (5.4)
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N o_ o oz

o = —Cosu (5.5)

in which 1/R, = da/ds, and R, is the radius of curvature of the contour in the y-z plane.

The shear center for the section lies along the z-axis at z =z, , because of the as-
sumed symmetry. In thin-walled beam theory, the coordinates of a point on the contour
relative to the shear center are r(s), which is measured along the normal to the contour
at s, and q(s) which is measured along the tangent to the contour at s. Coordinates r and
q are called contour coordinates. Coordinate r(s) is not to be confused with the cylin-
drical coordinate r introduced earlier. In general, the cylindrical coordinate r is replaced
with a-z. Thus, a material point in the wall located at s and { can be defined in terms

of r, q, y, and z as follows

1(s) + { = ysina — (z—2z,)cosa (5.6)

q(s) = y cosa + (z—2z,) sina (5.7

P

The displacement components in the 8-, y-, and z- directions are designated u, v, and

w, respectively. In Vlasov’s curved beam theory, these are given by

u(0,y,z) = U(0) — y¢,(0) + z¢(0) — w(s, {)x(6) (5.8)
v(0,y,2) = V(0) — (z—12p) ¢,(0) (5.9)
w(0,y,2) = W(0) + yo(6) (5.10)

in which U(8) is the circumferential displacement of the centroid, V(8) and W(0) are
the y- and z- direction displacements, respectively, of the shear center, ¢,(0) is the rota-

tion of the cross section about the shear center and is positive counterclockwise when
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Figure 40. General symmetric cross section: The sketch illustrates the cross-sectional coordinates for
an open, thin-walled circular section. Contour coordinates: r(s) and q(s). Shell wall coor-
dinates: s, {. Cartesian coordinates of contour: ¥(s), Z(s).
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viewed down the positive x-axis, ¢,(6) and ¢,(6) are rotations about the y- and z- axes,
respectively, which are positive counterclockwise when viewed down their positive axes.
Except for the term wr in the expression for u, the displacements in Eqs. (5.8-5.10)
represent a deformation for which plane sections remain plane. The term wrt represents
warping of the cross section.

In cylindrical coordinates the linear strain-displacement equations are

g = (Uy — W)/(a — 2)
byy = Viy

€2 = Wy
(5.11)
y0y = u)y + V;H/(a - Z)

Yor = Uy, + (W, + U)f(a — z)

yyZ = VYZ + W’y

in which partial differentiation with respect to a coordinate is denoted by a comma with
the coordinate following as a subscript. Substituting the displacements of Egs. (5.8-5.10)

into the strains in Eqgs. (5.11) results in

(@ —2)egg = U = W —y(¢', + &) + 2¢'y — 0 (5.12)

=0 (5.13)

@=2)ypy = —(a = 2z)p, + V=2 = )¢y — ¢) — (a — 2wyt (514

@ = 2)yp, = W +U+ady + y(¢'y — ¢) — [@a — Do, + 0]z (519

Yy = 0 (5.16)
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in which a prime represents an ordinary derivative with respect to 6 . Vanishing of the
strains in Egs. (5.13) and (5.16) indicates there is no distortion within the cross section.

The rotation-displacement relations are taken as

by = — (W' + U)a (5.17)
b, = Vi@ — 7, (5.18)

and the unit twist-rotation relation is taken as
1= (¢ — ¢Jla — 7 (5.19)

As a consequence of Egs. (5.17-5.19), the transverse shearing strains y,, and y, in Egs.

(5.14) and (5.15) are rewritten as

(a - Z)V&y = = [(a - Zp)(z - Zp) + (a - Z)wyy]‘t (520)
(@ — 2)vg, = [(@ — 2y — (a = Do, — ©]r (5.21)

The transverse shear strain components in the shell coordinates (s, 6) are yg and yg.

They are given by the transformation equations

Vos = Voy COS & + Vg, SN0 (5.22)
Yor = Yoy sina — yp, COSQ (5.23)

After substitution of Egs. (5.20) and (5.21) into (5.22) and (5.23) , the transverse shear

strains in shell coordinates are
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(@ — 2)ygs = l(a — zp)(ysinae — (z — zp) cos )
(5.24)

— (@ — Z)(w,y cosa + w,, sina) — wsinalr

(@ — 2)yp, = [—(a — zp)(ycosa + (z — z,)sina)
(5.25)

- (a — zZ)(w,ysina — w,,cosa) + wcosa]r

From the chain rule and Eqs. (5.4) and (5.5), partial derivatives of the warping function

in shell coordinates are

w,s = (I + {/R) (w,ycosa + w,, sin o) (5.26)

W,y = W,y Sino — w,; COS a (5.27)

Yy

As a consequence of Eqgs. (5.6) and (5.7) for the contour coordinates, and Eqgs. (5.26) and

(5.27), the transverse shear strains are
(@ — 2y = [(a — Z)(x(s) + {) — (a — 2)(1 + {JRY 'w,s — wsina]r (5.28)
(@ — 2ygr =[—(a — z)q(s) — (@ — Zw,; + wcosalr (5.29)
Using Eqgs. (5.4) and (5.5) it can be shown that

(a — z)° a( o

(1+(R) os\a—2 ) = (a—-2)( + {R) o, + wsina  (5.30)

(a—-z)z—gz—(aﬁ)z) = (a — Z)o,, — wcosa (5.31)

and with these identities Eqs. (5.28) and (5.29) are rewritten as
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Y
(a — Z)ygs = {(a = z,)(x(s) + ) — (l(a+ C/Zl){) 'aés'( a = z )}‘L’ (5.32)

(a — 2)yg = {—(a — 2,)9(s) — (a — z)2-§5( T )}r (5.33)

The Vlasov assumption is that the transverse shear strain vanishes on the contour;
that is, v,(s,{ =0) = 0 . Let w(s,{=0) = @(s), and the Vlasov assumption implies

from Eqn. (5.32) that

(@ — z)r(s) — (a — zf—dﬁis—( — ) =0 (5.34)

Integrating Eqn. (5.34) with respect to s from s=0 to s, we write

B(s) = (a — 7)) (a — Z(S))J(——i‘q’)———ds (5.35)

a — 7(s))

in which the origin of s is selected such that the integral in Eqn. (5.35) vanishes if the
integration limits are over the entire contour C. For thin rings, the largest cross-sectional
dimension is less than one-tenth the radius a. Thus, a-Z ~ a, and Eqn. (5.35) is approxi-

mated by

B(s) = J "K(s)ds (5.36)

0

which is the same expression as used in straight beam theory. The geometric interpreta-

tion of @ in Eqn. (5.36) is twice the area swept-out by a ray whose one end is fixed at
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the shear center and the other end moves on the contour from s=0to s. For this reason,
the contour warping function of Eqn. (5.36) is called the sectorial area.

The Kirchhoff-Love assumption is appropriate for the thin-walled shell elements of
the curved beam. This implies the transverse shear strain component y, vanishes. Set-
ting the coeflicient of = in Eqn. (5.33) to zero, and then integrating with respect to ¢,

we obtain
w(s,{) = [(a — z,)q(s) + (a — Z)o(s)]/ cos o + {a(s) (5.37)

in which w(s) is the thickness warping function. The first term on the right-hand-side
of Eqn. (5.37) is independent of { and is identified as the contour warping function
@(s). As a result of this identification, the expression for the thickness warping function

is

~ (a — zp) @
56 =~ _Zf’) q + I‘{"e (5.38)
where
I/Ry, = cosaf(a — Z) (5.39)

The quantity 1/R, is the normal curvature of the @-curve in the shell element reference

surface. Thus, the warping function for the cross section is

w(s, ) = @) + (a(s) (5.40)

with the contour warping function @(s) given in Eqn. (5.35) and the thickness warping

by Eqn. (5.38).
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The distribution of the shear strain component y,, through the thickness of the shell
wall is approximated as a linear function of {. A series expansion in { of the coefficient
of the unit twist = in Eqn. (5.32), subject to the Vlasov assumption (5.34), Egs. (5.2),

(5.4-5.7), and (5.38-5.40), results in

2(a — zp)2 )
(a — 2)ps = {—(;_——.Z.—)—c + 0 )}r (5.41)

The terms of order {? and higher are neglected in Eqn. (5.41).

The nonzero strains are &,, Eqn. (5.12), and y,, in Eqn. (5.41). These can be rewrit-

ten in the form

(1 — Z/a)(1 + {[Rp)egg = € — K, + 2Ky — 0(7'[a) (5.42)
(1 — Z[a)(1 + {/Rg)vgs = E%Cr (5.43)
where
@ — z) = a(l — Z/a)(1 + {/Ry) (5.44)
e = (U — W)a (5.45)
K, = (@', + ¢y)la (5.46)
K, = ¢'y/a (5.47)

Eqn. (5.44) follows from Eqn. (5.2) and from the definition of 1/R, Eqn. (5.39). The
quantity e Eqn. (5.45) represents the circumferential stretching strain of the centroidal

line, k, is the change in curvature out of the plane of the curved beam, and «k, is the
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change in curvature in the plane of the curved beam. Substituting Eqn. (5.1) for y, Eqn.
(5.2) for z, and Eqn. (5.40) for w, into Eqn. (5.42) gives the circumferential strain as an

explicit function of {. The result is

(1 = Zja)(l + YRglege = © — T, + 7xy — B(<'[2)

5 (5.48)
— {[sinak, + cosaxy, + w(z'[a)]
The strain energy increment for the curved beam is
oU = J (0pe09e + 0pB7vg5)dVol (5.49)
Vol

in which o, is the circumferential normal stress and o, is the shear stress. The differen-

tial volume element is
dVol = (a — z)d6dA = (1 + {JR)(1 + {/RpA( (1 — Z/a)ds adf (5.50)

in which the area element within the 8-cross section is expressed in terms of shell coor-
dinates s and {. The strain increments ¢, and dy,, in Eqn. (5.49) are obtained in terms
of the increments of the bar strains de, ok, dk,, and ét from Eqgs. (5.43) and (5.48).
These strain increments are substituted into the strain energy increment (5.49) using the
volume element in Eqn. (5.50). Integrations over the cross section are performed, and

the resulting strain energy increment for the curved beam is written as

_ 9
5T = | [Nde + Mgk, + M,di, + M, (67'[a) + Tdrladd  (5.51)
2

in which 6 € (6,, 6,), 6, > 6,, and the curved beam resultants are defined by the contour

integrals
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N = j N,ds (5.52)
C

M, = f (NyZ — M cos o)ds (5.53)
C
M, = — f (Np¥ + M, sin «)ds (5.54)
C
M, = — J (Ny@ + M,o)ds (5.55)
C
T, = 2(1 — z./a)* --—-Mo—s—-ds (5.56)
y P (1 — z/a) '
C

The shell resultants appearing in the contour integrals of Eqs. (5.52-5.56) are defined

by the following integrals through the thickness of the shell elements:

(Ng, My) = L(l’ Qoge (1 + {/RAL (5.57)
My, = 1Ccfes(l + {/RG)dL (5.58)
96
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The curved beam resultant N acts in the circumferential direction at the centroid of the
cross section. The bending resultants M, and M, are vectorally directed along the posi-
tive y- and z-axes, respectively, by the right-hand screw rule. The bimoment M, is taken
to act in the circumferential direction at the shear center. The bimoment is statically
equivalent to zero force and zero moment. The Saint Venant torque T, is directed cir-

cumferentially and also acts at the shear center.

Kinetic Energy

The kinetic energy is

T= —é—- J (@® + v* + wHpdVol (5.59)
Vol

where p denotes the mass density, and the overdot denotes a partial derivative with re-
spect to time. Time derivatives of the displacements are determined from Eqs. (5.8-5.10).
Using Eqgs. (5.1), (5.2), and (5.40), these time derivatives can be written explicitly in
terms of contour coordinates ¥(s), z(s), @(s), and @(s), and the thickness coordinate (.

The results are

(s, 6,4,1) = U@,0) — J(s)p,(0,0) + Zd,(0,0) — w(6,1)

. . R (5.60)

— {[¢,(0,0) sina(s) + ¢y(6,t) cosa(s) + w(s)t(6,t)]
(s, 0,50 = V(0,0) — (Zs) — 2)bu(0,0) + {y(6,1) cos os) (5.61)
W(s, 6, 0,0) = WO,0) + F(5)h,(0, 1) + ($,(6,1) sin a(s) (5.62)
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These relations for the velocity components are substituted into the kinetic energy (5.59)

along with the volume element (5.50). Integration over the cross section is performed

and the result is

_ 1 %210 .
T= = J u muad0 (5.63)
2 01 ~ ~
in which the 7x1 velocity vector U is
w00 = (U, V, W, by, by, &5, 11 (5.64)

and the 7x7 symmetric mass matrix m is

U v w ¢ ¢ ¢
m; 0 0 0 mys mgmy
my, 0 my,; 0 0 O
my; my O 0 O

m, 0 0 O (5.65)

Mss Mse Mgy

Mg Mgy

Symm myy
98
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The nonzero elements of the mass matrix are the contour integrals

my; = My, = Mgz = jm(l — zfa)ds
C
mys = f(mi — Iy cosa)(l — z/a)ds
C

Mg = —Nyy = — fc(m_y .+ IC sin OC)(I - Z/a) ds
my; = — J(mﬁ + L)1 — Z[a)ds
c

my, = j(—m(i — zp) + I cosa)(l — Z/a)ds
c
m44 = J\(m(rz + q2) + 2I§r + Icc)(l - Z/a) dS
2 ,
mss = J‘[mi2 — 2lzcosa + Iy cos’a(1 — zfa) ds (5.66)
C
Mgy = J [-myZ + I(Fcosa — Zsina) + I sinacosa(l — Z/a)ds
C
mg; = J‘[—mz—'cﬁ + I(—Zw + cosa®) + Iy cosaw](l — Z[a)ds
C
Mg = j [my + 21 Fsino + I sin’a](1 — Z/a)ds
C
mg; = J[mird)' + I§(§c7) + wsina) + I sin aw](1 — z/a)ds
C

my; = J‘[m&?2 + 21,00 + Igcch](l — Z[a) ds
c
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in which the mass properties of the shell wall are

(m, I, Iy) = J (1, &, &) p(l + URY(L + /Ry L (5.67)
h

Hamilton’s Principle

The variational statement of dynamic equilibrium is Hamilton’s principle. For no

external loads acting on the curved beam, Hamilton’s principle is

b _
J (6T — 6U)dt = 0 (5.68)
4

where thé time limits satisfy t, > t,. The four independent functional degrees of freedom
are U, V, W, and ¢,. Rotations ¢, and ¢,, and the unit twist 7, depend on on U, V,
W, and ¢, as shown by Eqs. (5.17-5.19). Lagrange multipliers are introduced to keep the
seven functional degrees of freedom U, V, W, ¢,, ¢,, ¢,, and 7 in the functional inde-
pendent. The shear force Q, is the Lagrange multiplier associated with rotation ¢,, shear
force Q, is the Lagrange multiplier associated with rotation ¢,, and the torque T is the

Lagrange multiplier associated with unit twist =. The augmented functional is

Jz(af —6U)dt =0 (5.69)

1
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where

50 = 00 + [ (QVI@ - 7) = 66,1 + QUEW' + 5UJa + 3]
6,
+ T[6¢", ~ 6,)/(@ — 7,) — b7} ad0

The variation of the kinetic energy obtained from Eqn. (5.63) and the variation of the

augmented strain energy in Eqn. (5.70) are substituted into the variational principle Eqn.

(5.69). In addition Eqs. (5.45-5.47) and (5.51) are substituted in the appropriate manner

into the variational principle. After these substitutions, the inertia terms are integrated

by parts with respect to time, and the variations in the degrees of freedom

0U, 6V, 6W, 6¢,, 6¢,, 6¢,, and 6t at times t, and t, vanish according to Hamilton's

principle. Integrating by parts with respect to 8 yields the Euler-Lagrange equations as-

sociated with each functional degree of freedom.

oU:

A

oW :

Oy

Oy

0¢,:

ot
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~my U — mysdy — myed, — mys% + N'ja — Qjla = 0
—my,V — myd, + Qylla — z)) =0

~my;W — myd, + Nfa + Q'pla = 0

~myV — my,W — myd, — Myja + T'/(a — zp) =0
—mysU - mssf'f;y — mse, — msyt + M'yla — Q, =0

~mgU — mgedy — meed, — mgt + M’,/a
+ Q+ T/a — z) =0

—m;;U — msv&;y — Mgd, — Mgyt + Myfa — To+ T =0

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)
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The seven boundary conditions at 8 = 6, and 6 = 6, are

Essential Natural

U N

v (1 — z,/a)"'Q

W Q,

(5.78)

by (1 — z,/a)”'T

¢)Y MY

¢, M,

T M,

Hooke’s Law

It is assumed that the shell elements comprising the thin-walled curved beam are
laminated from materials having monoclinic symmetry with respect to a {-surface (a
surface on which ¢ is constant). Monoclinic symmetry is exhibited by an off-axis lamina
reinforced with continuous and aligned fibers. This is the case for the graphite-epoxy
specimens in this study. The fiber direction, commonly labeled the 1-axis, is established
by a counterclockwise rotation through an angle 8 from the positive s-axis to the 1-axis,
looking down the positive { -axis. In beam theories, the lateral stresses are assumed to
vanish in Hooke’s law. This assumption implies that stress components o, oy, and oy

are zero in the generalized strain-stress relations. Thus, for an off-axis lamina the

strain-stress relations are
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’ !
g = S'72099 + S'2600
o
Vor = S'aa0g;

Yo = S'62099 + S'6600s

in which the off-axis compliances are

S’22 = S“n4 + (2812 + 566)m2n2 + Szzm4

S'%6 = S'a = (281; — 28, — Sggmn’ — (2Sy, — 2S;; — Sgm’n

S'as = S44m2 + Sssn2

S'es = 22811 + 28 — 4S;; — Sem’n’ + Seg(m’ + n)

(5.79)

(5.80)

with m = cosf andn = sinf. The on-axis compliances in terms of engineering

constants are

Si1 = UE;, Sy = —v,/Ei, Sy = 1/E,
Sua = /Gy, Sss = 1/Gy3, Se6 = 1/Gyy

(5.81)

The transverse shear strain y, was assumed to vanish by the Kirchhoff-Love assump-

tion. As a consequence, the second of Eqs. (5.79) is neglected. Writing the inverse of the

two remaining equations in Hooke’s law from Egs. (5.79) we have

0o = Rypggg + Rogvps

0gs = Rogegs + Reevps
in which the reduced transformed stiffnesses are
(Ryzs Ry Reg) = (S'g6r —S260 S'22)/[522866 — (S'26)"]

Analysis

(5.82)

(5.83)
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For an isotropic material, Ry, = E, Rys =0, R = G, where E and G are the modulus of
elasticity and the shear modulus, respectively.

The Hooke’s law for the curved beam is obtained as follows. The strain relation for
£, in Eqn. (5.48) and the relation for y, in Eqn. (5.43) are substituted into Eqs. (5.82)
to get the stresses in terms of beam strains e, k,, k,, 7'/a, and 7. These stress-beam strain
equations are in turn substituted into the definitions of the shell resultants
N,, M,, and M,, in Egs. (5.57) and (5.58). Finally, these shell resultant-beam strain re-
Jations are substituted into the definitions of the beam resultants in Eqs. (5.52-5.56). The
result of these manipulations is

r -1 r - _

N EA ES, —ES, —ES, EH e

M, El,, —El,, —EL,, EH, || &

M,| = El,, El,, -EH,| | «, (5.84)

M, El,, —EH,||</a

TS Symrn GJ i T i

in which
EA = J ay(1 — Z/a)"'ds (5.85)
C
ES, = J(anz — by, cosa)(1 — Zfa)”'ds (5.86)

C

Analysis 104



ES, = J (25,7 + by sina)(1 — Z/a)"'ds (5.87)
C

ES, = J(azﬁ + bpo)(l - z/a)'ds (5.88)
C
EH = 2(1 — zp/a)sz26(l — Z/a)ds (5.89)
C
El,, = j (ayy7° — 2bj7 coso + dy, cosa)(l — Z/a)"'ds (5.90)
C

El,, = J(anﬁ + byZsina — Jcosa) — dyy sinacosa)(l — Zfa) 'ds (5.91)
- _

El,, = f(aﬁz‘cﬁ + by(Zw — @cosa) — dyyw cosa)(l — Zfa)~'ds  (5.91)
C
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EH, = 2(1 — zp/a)zj(b262 — dye cosa)(1 — Zfa) *ds
C

El, = J(azzyz + 2b,¥sina + dy, sin’a)(1 — Zfa)'ds
C

El,, = Jv(an}'/‘a? + bzz(?a) + wsina) + d22cT) sino)(1 — Z/a)‘lds
C

EH, = 2(1 — z,/a)’ f (byY + dyg sina)(1 — Zfa)ds
C

waw

El,, = J(ama;2 + 2b,50 + dyp@?)(1 — Zfa)”'ds
C

EH, = 2(1 — zp/a)zj (by®@ + dy)(1 — Zja) ds
C

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)
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GJ = 4(1 — zp/a)“fd%(l — Z/a)"ds (5.99)
C

In the contour integrals of Egs. (5.85-5.99), which define the curved beam stiffnesses,
coeflicients in the integrals appear that are based on integrated stiffness properties
through the shell wall thickness. The formulas for these integrated stiffness properties

are

(a3, by, dp) = J(l, L PYRy(1 + LRI + LRy TNdL (5.100)
h

(a26s byg» dag) = J(l, L O Ry(1 + LRI + LRy (5.101)
h

dgs = JResiz(l + LR + {RpTTdL (5.102)
h

Within the cross section, the positions of the modulus-weighted centroid, shear
center, and contour origin (position where s=0), are determined by requiring sclected
stiffness terms in Eqs. (5.84) to vanish. Requiring the modulus weighted first moments
ES, and ES, to vanish locates the z and y positions, respectively, of the centroid. The y

and z positions of the shear center are determined by setting the modulus-weighted first
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sectorial moments El,, and EI,,, respectively, to zero. The condition that the modulus-
weighted sectorial area ES, vanishes determines the position of the contour origin.
Finally, the direction of the principal axes is determined from the condition that the
modulus weighted product' moment EI,, equals zero. Thus, Hooke’s law for a curved

beam using principal coordinates of the cross section simplifies to

[ EA 0 0 0 EH
El, 0 0 -EH,
El, 0 -EH, (5.103)
El,,, —EH,
Symm GJ

The stiffness matrix in Eqn. (5.103) is not diagonal because of the presence of the “EH”
terms. If the laminated wall construction is specially orthotropic, then the terms
EH=EH,= EH,=EH,= 0 , and the stiffness matrix is diagonal. For a specially
orthotropic laminate, the lamina fiber angles (6) are either zero or ninety degrees so
S, = 0 in the second of Eqs. (5.80), and Ry = 0 in Eqs. (5.83). For Ry = 0, Eqn. (5.101)
shows that shell stiffnesses a,=b,=d,,= 0, and consequently EH, EH,
EH;,, and EH, all vanish.

For a symmetric laminated wall construction, shell stiffness b,, in Eqn. (5.100) and
b, in Eqn. (5.101) are zero. This simplifies the computation of the beam stiffnesses in
Eqs. (5.85-5.99). The term EH in Eqn. (5.89) is zero if by is zero, but terms
EH,, EH,, and EH, are not zero because d, is not zero. The shell stiffness term d,; re-
flects bend-twist coupling of symmetric laminates containing off-axis plies. For straight
beams with symmetric laminated walls, Bauld and Tzeng (Ref. 27) have derived similar
terms to the EH terms presented here. These authors point out that Vlasov’s assumption
that y, = 0 on the reference surface is only applicable to symmetric laminated wall con-

struction. For thin curved beams, the largest cross-sectional dimension is less than
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one-tenth the radius a. It is permissible, then, to neglect Z(s)/a and z,/a with respect to
unity in all the formulas presented for the curved beam. For thin walls h/R, and h/R,
are also small with respect to unity, and are neglected in the shell wall stiffness formulas
of Eqs. (5.100-5.102). Consequently, for thin curved beams with thin wall cross sections,
the formulas for the beam stiffnesses, Eqn. (5.85-5.99), reduce to those of a straight
beam theory.

If the thin-walled curved beam is made of an isotropic and homogeneous material,
then the reduced stiffnesses are R,,=E, Ry =0, and Ri; = G. Using principal coordi-
nates in the cross section, and assuming a thin curved beam with thin walls made from

an isotropic and homogeneous material, Hooke’s law is

N = EAe
My = Elx,
M, = El,x, (5.104)
M, = El, 7 /a
T, = GJz

In Eqgs. (5.104), E is Young's modulus, G is the shear modulus, A is the area of the cross
section, I, is the second area moment about the y-axis, I, is the second area moment
about the z-axis, I,,, is the second sectorial moment (or the warping coefficient), and J

is the effective polar moment for Saint Venant's torque T, . These geometric properties

of the cross section are given by the formulas
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A=fhds
c

f\
I, = | [hZ" + (0’/12) cos’a]ds
vc
m
B =2 3 . 2
I, = ] [hy" + (h'/12) sin"a]ds (5.105)
C

I, = J[h@z + (B%/12)@*]ds
C

D W P
J = 3Jvhds
C

In some thin wall beam theories the terms with h? in Egs. (5.105) are neglected except

in the equation for J.

Continuum Solutions

This section describes the development of continuum solutions for the in-plane
static and vibrational response for a thin curved beam with homogeneous, isotropic,
thin-walled, construction. For the special case of a symmetric cross section, the
equations decouple allowing individual solutions for the in-plane and out-of-plane re-

sponses. An out-of-plane vibration solution is also presented.
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In-Plane Vibration Solution

The equations of motion as stated in Eqs. (5.71)-(5.77) are extensively coupled by
the incrtia terms. A continuum solution for the coupled equations would be very diffi-
cult. For our special case, the differential equations of motion which govern the the

in-plane response (5.71, 5.73, and 5.75) reduce to

sU: —m,U 4+ N'ja — Q,Ja = 0 (5.106)
oW : —my;W + Nja + Q',/a = 0 (5.107)
Sy —mssp, + M'yla — Q, = 0 (5.108)

in which m,, = m;; = pA =m, and my = pl, . Solving Eqn. (5.108) for Q, and substi-

tuting into Eqgs. (5.106) and (5.107) yields
~m0 + N'ja = —pl,d,fa + M'/a’ | (5.109)
—mW + Nfa = plyd,/a’ — M" 2’ (5.110)

Using the expressions for ¢, in Eqn. (5.17), M, and N in Egs. (5.104), ¢ in Eqn. (5.45),

K, in Eqn. (5.47) and substituting into Eqs. (5.109) and (5.110) yields

El I

EA ’" 7] Yy " 7] -1 p yy X7¢ .

U= W) =W U = WO+ =R+ 0) (1)
EI . ply )

EA - wy - —Z w4 Uy = mW - (W 4+ U (5.112)

a a a
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A separable solution is assumed of the form

{U(O,t)} _ {A} 0 it (5.113)
W(8,t) B

in which i=+/—1, 1 is the frequency in radians per second, and # is an unknown pa-

rameter. To determine #, first substitute Eqn. (5.113) into Egs. (5.111) and (5.112) to

get

C, Gl(a 0
e e
C,C.| (B 0

where

— 3 El m
C, = I i/j + 2]+ A+ )

—_ EIl G A m
T, = al’ —2 — £ 4 P2 (5.115)
a a
_ El _ m
C, = ;74 a:z i E/z—\ _ /12[m _ 772 a;s ]
a

Second, a nontrivial solution for A and B in Eqs. (5.114) requires that the determinant
of the coefficient matrix vanishes, and this leads to a cubic equation (characteristic
equation) in #2 The six roots of # are denoted 7;,j = 1,2, ... 6, and may occur as complex

conjugate pairs. For each root ; , Eqs. (5.114) also yield the eigenvector components
P = (B/A)  ,n=1 (5.116)

Thus, the general solution to Egs. (5.111) and (5.112) is
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U(o,t . 1
{ ( )} = M ch{ }e"ﬁ (5.117)
W(0,t) P,

where C; are the unknown constants. The constants C; are determined from the bound-
ary conditions. For example, clamped end conditions, see Eqs. (5.78), require U, W, and

¢, to vanish at § = 6, and 6 = 6,. This leads to the six homogeneous equations

6
U@,) = ) .¢ e =0
=1

6
U@y = ».C; &% = 0
j=1

6
W(6,) = ).C; P, ¢t =0
=1

) (5.118)
W(,) = ).C; P, ¢ = 0
j=1
6
W/(8,) = Y.C; Py &t = 0
j=1
6
W'(0,) = Y .C; Py &2 = 0
j=1
These are written in matrix form as
AC=0 (5.119)

in which A is a 6 x 6 matrix and C*™=[C,] . Nontrivial solutions to Eqn. (5.119) require
the determinant of A to vanish. Since the six roots of » are functions of 1, and y appears

as an exponent in the coefficients of matrix A, this is a nonlinear eigenproblem for the
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eigenfrequency 4 . The solution proceeds by a determinant plotting method, in which 4
is assumed, the six roots of 7, are computed along with the six values of P, , and the de-
terminant of A in Eqn. (5.119) is calculated. Increasing values of 1 are selected until a
sign change in the determinant occurs, and Newton’s method is used to converge on the
frequency. For a given frequency, the eigenvectors C of Eqn. (5.119) are obtained to
give the mode shape. Although the determinant plotting technique is a not very good

numerical method for large matrices, it works well enough for the matrices encountered

in this problem.

The boundary conditions for the free-free case are

N(6,) = N() = 0
My(0;) = M6, = 0 (5.120)
Qz(el) = Qz(92) =0

The equations for pinned boundary conditions are

U(6;) = U(fy) = 0
W(6,) = W(6,) = 0 (5.121)
M(6;) = My(6,) = 0

The equations for pinned boundary conditions with torsional springs are

U6;) = U() =0
W) = W(b) =0
My(el) = arW’'(6;)
My(0,) = arW'(6,)

(5.122)

Where «; is the torsional spring constant.
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In-Plane Static Solution

For a thin curved beam with isotropic, homogeneous, thin-walled construction and
a monosymmetric cross section, the equilibrium equations describing the in-plane static
response can be obtained from the equations of motion (5.106-5.108) by discarding the

inertia terms. The resulting equations are

ouU: N'ja — Q,Ja = 0 (5.123)
A N/a + Q',Ja = 0 (5.124)
0dy: M'yfa — Q, =0 (5.125)

Eliminating Q, in Eqs. (5.123) and (5.124) using (5.125) yields

N'ja — M',Ja* = 0 (5.126)

Nja + M"Ja’

Il
)

(5.127)

Substituting the relations for N and M, from Hooke’s law in Eqn. (5.104), Egs. (5.126)
and (5.127) become

. EIl
.LL?_(UH — WI) + Zy (WIII + Un) — 0 (5.128)
a a .
s EI
—-——iﬁ (U = W) = =W+ U7) = 0 (5.129)

where A and I, are defined in Eqn. (5.105). Dividing Egs. (5.128) and (5.129) by

EA/a? results in

Analysis 115




U” — W + (W + U") =0 (5.130)
U — W =W +U")=0 (5.131)

in which 2 = 1,,/(Aa?) is the square of the slenderness ratio.

Assume the in-plane displacements can be represented by

U A
{ }: { }e"" (5.132)
W B

Substituting Eqs. (5.132) into the differential Eqgs. (5.130) and (5.131) leads to the fol-

lowing characteristic equation for #

2020 + 1) =0 (5.133)

The roots of this characteristic equation are 0, 0, +1i, +1, -i, -i, in which i = /-1 . Thus,
there are three repeated roots for #, and the procedure presented by Kaplan (Ref. 32)
was used to construct six linearly independent solutions to Egs. (5.130) and (5.131). The

solution 1s

U 1 6 cos 8 sin 8
= Cl + C2 ‘+‘ C3 + C4
\%Y 0 1 — sin 6 cos 6

0 cos 0 6 sin 6
+ CS -~ +C6 ~
—0sinf + rcoséf @cos@ — rsinf

where T is defined as [1 — 12]/[1 + 12].

(5.137)

The solution in Eqn. (5.137) satisfies the differential equilibrium equations exactly
and can be used to model the static response of a thin curved beam subjected to com-

bined in-plane loading. A curved beam subjected to a radial load £, a tangential load fo
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and an in-plane couple whose moment is m, at a location defined by 6 = 6" is shown in

Fig. 41. The curved beam is supported at 0 =(6,,0,) and 6,< 6’ <0,

This loading requires that two solutions be implemented over the beam, one for the
left portion (0, < 8 < 6°) of the curved beam and one for the right portion (8' < 0 < 6,) .

Thus, the solution for the left-hand-side is

6

U, .
= chgj(e) 6, <0< (5.138)
WL

=1

and for the right-hand-side

6
Ur )
= Zcmgj(e) 0 <6<0, (5.139)
WR

=1

where ¢,(0) are the six linearly independent solutions from Eqn. (5.137).
The problem requires twelve equations to solve for the twelve unknown constants
C,. Six of the equations can be obtained from transition conditions at 6. Continuity of
the beam at 0" requires that the displacements and rotation at §° are continuous requir-
ing
u(el) = U
W(OD) = W) (5.140)

W) = W'(6))
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Figure 41. Loading for in-plane static solution: A curved beam is subjected to radial, tangential, and
bending loads at 6 = §°. The curved beam |is supported at the ends

@ = 6,and 6 = 6)).
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in which a quantity with a “+” superscript is evaluated from the right interval and a ”-"
superscript implies the quantity is evaluated from the left interval.
Equilibrium of a infinitesimal element at = 6" provides three jump conditions in

the actions given by

N — N©OD) = —f
M(6}) — M(6) = —m, (5.141)
Qe — Q60) = £,

The remaining six equations can be obtained from the boundary conditions at
6 =0, and 6 = 0,. The boundary conditions for clamped, pinned, free, and pinned with
a torsional spring are provided in Egs. (5.118) and (5.120-5.122), respectively. Thus,
using three boundary conditions at @ = 6,, three continuity conditions of Egs. (5.140),
the three jump conditions of Eqs. (5.141), and three boundary conditions at 6 =0, , a

set of linear equations can be written in the form

AC = F (5.142)

where A is a 12 x 12 matrix of coefficients, C is a 12 x 1 vector containing the unknown
constants, and F is a 12 x 1 load vector. The solution vector C was determined by
Gaussian elimination.

Having found the solution vector, the displacements of the beam are given by Egs.
(5.137-5.139). Differentiating and substituting into Egs. (5.45) and (5.47) gives the ex-
tensional strain and the change in curvature, respectively. Substituting the strains into

Eqn. (5.104) provides the beam actions N and M.
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Out-of-Plane Vibration Solution

The differential equations of motion which govern the out-of-plane vibrational re-
sponse of a thin curved beam with thin, isotropic, homogeneous, walls can be obtained
from Eqgs. (5.72), (5.74), and (5.76) and (5.77). For the special case of a symmetric cross

section using principal centroidal axes, these equations reduce to

8V —my,V — myd, + Qyfa =0 (5.143)
O, —my,V — myd, — M,yja + T'ja = 0 (5.144)
S, —mged, + Myla + Q + Tja = 0 (5.145)
ot: —-m;;i + M'fa— T+ T =0 (5.146)

Having assumed the cross-sectional coordinates are the principal centroidal axes,
My = Mz, = M2, Me=pl(ly + L) + AZ] , mg=pl,, and m,=pl,, where A,

I, L, I, are defined in Eqs. (5.105). If the cross section is doubly symmetric, the

yy?
centroid coincides with the shear center and z, is zero. Solving Eqs. (5.145) and (5.146)
for the shear force Q, and the torque T, respectively, and substituting into Eqgs. (5.143)

and (5.144) yields

T I\/I”ww M prw ey PI AT —x) _— 7
—— 4 2o Lo 0y B 4wV 4 Tz (5.147)
a a a a
T’ Y M — ol . .
el azw — - = Tt 4 Mgy + Tz (5.148)
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Using Hooke’s law Eqn. (5.104) and substituting for ¢,, 7, and k, using Egs. (5.18),
(5.19), and (5.46), respectively, Eqs. (5.147) and (5.148) become

.. ; L, « 1 -- V' ’
RV + Figgh, — 2V + 2 — )+ Fy -
a a a
(5.149)
EIZZ I v Elww rree A
__—3—(¢x + P ) - 5 (d)x - a ) =0
a a
I . pr Sy {]n GJ ' Vu
mZpV + Mydy — a2w (" — “a /T _ai—(d)x - T)
5.150
EIZZ _\7_”_ EICOCU rree V”” = () ( )
+ a2 (be + a ) + 3.4 (d)x - a ) =

A separable solution is assumed of the form

V(o,t A .
{4)((0 t))} = {B}e”"e“‘ (5.151)

in which i=.,/—1, 4 is the natural frequency in radians per second, and # is an unknown

parameter. To determine #, first substitute Eqs. (5.151) into Egs. (5.149) and (5.150) to

[El 'C'z] A 0
o {}={} (5.152)
C, G| (B 0

get

where

_ El El,, _ I Lo
C = nT—2 + —22] - 28l 4 - (B )
a a a a a
ral Elww GJ EI Z — plww
C, = —n“——;;—— + rﬂ[?- + -—a-f-’-] + A ~mz, - —;3——;72] (5.153)
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_ EL,, El ol
Co=1" e S 4 — P —my + —;2-172]

A nontrivial solution for A and B in Egs. (5.152) requires that the determinant of the
coefficient matrix vanishes, and this leads to a quartic equation (characteristic equation)
in #2. The eight roots of » are denoted #, , j = 1,2, ... 8, and may occur in complex con-

jugate pairs. For each root #;, Eqs (5.152) also yield the eigenvector components

P; = (B/A); M= (5.154)

Thus, the general solution to Egs. (5.149) and (5.150) is

V(0 1) " 1 ,
{ } = e”ZC]-{ }e”" (5.155)
¢4(6, 1) P;

where C,,j = 1,2, ... 8, are unknown constants. The constants C; are determined from the
boundary conditions. For example, clamped end conditions, see Eqgs. (5.78), require

V, ¢, V', and ¢’, to vanish at 0 =6, and 6 = 8,. This leads to the eight homogeneous

equations
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8
V(0,) = D.C; e =0
=1
8
V(6) = ).C; € = 0
=1
8
Bu(0) = 2C; Py et =0
j=1

8
(0, = Y .C; P " = 0

=1

8 (5.156)
Vi(8,) = ).y &= 0
j=1
8
Vi(0) = )Gy my € =0
=t
8
#'(01) = ). Py e = 0
j=1
8
¢'4(6:) = ).C; Py &% = 0
=1
These are written in matrix form as
AC =0 (5.157)

in which A is an 8x8 matrix and C” = [C;] . Nontrivial solutions to Eqs. (5.152) require
the determinant of A to vanish. Since the roots of # are functions of 4 , and # appears
as an exponent in the coefficients of matrix A, this is a nonlinear eigenproblem for the
eigenfrequency A. The solution proceeds by a determinant plotting method, in which 4
is assumed, the eight roots #; are computed along with the eight values of P, and the
determinant of A in Eqn. (5.152) is calculated. Increasing values of A are selected until

a sign change in the determinant occurs, and Newton’s method is used to converge on
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the frequency. For a given frequency, the eigenvectors C of Eqn. (5.155) are obtained

to give the mode shape.

The boundary conditions for the free-free case are

Qy(8,) = Qy(6y) = 0
T©®,) = T(6) = 0 (5.158)
M,(6,) = M,(6)) = 0

The equations for pinned boundary conditions are

V(el) = V(ez) =0
Dy(01) = ¢y(8;) = 0
M,(0)) = M,(6,) = 0
M, (0)) = M,(0,) = 0

(5.159)

Finite Element Computer Program

The finite element computer program used extensively in this study was developed
by Noor et al., (Ref. 7) specifically for the free-vibrational analysis of curved thin-walled
beams with open sections. The analytical formulation is based on a Vlasov-type, thin-
walled, curved beam theory similar to the theory discussed in this chapter. This section
briefly discusses the analytical development of the finite element relying heavily on the
equations presented previously to point out some interesting differences. Some practical

aspects of using the program will also be related.
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Element Formulation

The finite element developed by Noor et al., includes the effects of transverse shear
deformation which were not included by Vlasov nor in the development presented in this
chapter. A modified form of the Hellinger-Reissner mixed variational principle was used
to develop the element. Including transverse shear deformation adds an additional two
degrees of freedom, and reduces the continuity requirements from C'to C° for the
transverse displacements V and W.

The Hooke's law relation used in the element development is

Ny EA 0 0 -ES, O 0 0 €
M, El,, -El,, El,, 0 0 0 | «x,
M, El, -El,, 0 0 0 ||«
M,| = Bl,, 0 0 0 f|¥] (5160
0
Q, GAy 0 0 |7
Q, GA, 0 ||,
T, SYMM Gl || =
L. L .

in which the additional curved beam strain measures relative to those presented earlier

are

\Il _ ¢”x/a2
voy = V'la — ¢, (5.161)
vo: = (W' + U)fa + ¢,

The notation used by Noor has been transliterated into the notation used in this study.

The finite element code was developed for isotropic homogeneous materials, thus, the
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"EH” stiffness terms characteristic of composite materials do not appear. A consequence
of this is that the finite element model cannot model the bend-twist coupling of lami-
nated specimens.

The coordinate system used in calculating the section properties places the origin
and the pole at the centroid; thus, only the first moments of area S, and S, are zero. A
diagonal stiffness matrix offers few advantages in a numerical solution. The section area
properties A, and A, provide the opportunity to model the shear stiflness employing
shear correction factors to the shear stiffness GA.

The torsional strain component 7 in Eqn. (5.160) is consistent with the torsional
strain used in the Hooke’s law relation in Eqn. (5.104). However, the warping strain
component ¥ in the first of Egs. (5.161) is not the same as the strain measure 7’/a used
for the bimoment in the Hooke’s law of Eqgs. (5.104).

To achieve C° continuity for the rotation ¢, a new kinematic variable 6° is intro-
duced that is defined to be the derivative of rotation ¢,. This kinematic relation is en-
forced via a Lagrange multiplier A. Thus, both 6°and ¢, are represented by C°
interpolation functions in the element.

The functional used in the element development is

= My + | A, — 0%add — -2-!—
tp

C C

(A)*add (5.162)

where T, is the Hellinger-Reissner functional, A is the Lagrange multiplier associated
with the constraint condition, and e, is the penalty parameter in the regularization term.

The finite element equations for each element can be cast in the following compact

form
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where {H}, {1}, and {X} are the internal force parameters, Lagrange multiplier param-
eters, and nodal displacements, respectively, [F] is the flexibility matrix, [S] is the strain-
displacement matrix. Finally, [P] and [Q] are matrices associated with the constraint
condition and the regularization term in the augmented functional.

The regularization term in Eqn. (5.162) results in replacing one of the zero diagonal
submatrices in the discrete equations (Eqn. 5.163) of the Lagrange multiplier approach
with a nonzero diagonal matrix, [P]/e,, Mathematically, the submatrix cannot be zero
but physically it should be. The penalty parameter is used to keep the regularization
term small. Thus, an important consideration in this formulation is the proper selection
of the penalty parameter. The accuracy of the solution increases with increasing values
of ¢, . However, for very large values, the equations become ill-conditioned, thereby in-

creasing the round-off errors.

Application to Test Specimens

Noor’s finite element program was developed for vibrational analysis, but it can be
used to predict the static response as well, thus, it was used to model both the static and
the vibrational tests. In the static mode, loads are applied to the model at the nodes and
the program predicts the deformations and strains caused by the applied loads. When
the program is run in the dynamic mode, it calculates the ten lowest natural frequencies

(eigenvalues) and their associated mode shapes (eigenvectors). In addition, the program
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calculates the strain energy distribution in each mode. The strain energies due to axial
strain, shear strain, in-plane bending, out-of-plane bending, torsion, and warping are
calculated for each mode.

The strain energy distributions for the modes of the I-section and channel section
specimens are presented in Fig. 42. The extensional, shear, and warping energies are
uniformly small in all modes. The strain energies in the I-specimen modes are either
pure in-plane bending or a combination of torsional and out-of-plane bending energies.
Thus, the modes of the I-specimen were easily identified as in-plane or out-of-plane

modes on the basis of strain energy distribution.

The strain energy distributions associated with the modes of the channel specimen
always exhibit some degree of coupling between the in-plane and out-of-plane responses.
The channel specimen’s even numbered modes are dominated by in-plane bending en-
ergy and the remaining modes are dominated by torsional and out-of-plane bending en-
ergies. In general, if the energy in a mode consists of more than 85 % in-plane bending,
than that mode is considered an in-plane mode. If out-of-plane bending and torsional
energies comprise more than 85 % of the total energy, than that mode is considered an
out-of-plane mode. All of the modes of the channel specimen fit one definition or the
other, thus, the modes are easily classified based on their energy distribution.

With any finite element code, it is necessary to determine the number of elements
required for convergence. Convergence studies for static and dynamic cases were con-
ducted for both test specimens. The results of the dynamic convergence study are pre-
sented in Fig. 43. The natural frequencies converged for a sixteen element model. The
sixteen element model was selected for both the static and dynamic analysis of both
specimens from this convergence study. The elements have three nodes each providing
thirty-three nodes and 231 degrees of freedom (7 degrees of freedom per node).
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An important consideration in using the finite element program is the proper se-
Jection of the penalty parameter. The penalty parameter was chosen based on a conver-
gence study conducted for static and dynamic cases for both specimens. The penalty
parameter convergence studies were run for the sixteen element models. The conver-
gence studies for the dynamic case for both specimens are presented in Fig. 44. The
plots show that above a certain value of the penalty parameter the natural frequencies
are constant. The smallest value of the penalty parameter for which all the predictions

changed by less than 1 % was the value used in the subsequent analyses.

The plots show the affect of the penalty parameter on the natural frequencies of the
second, third, and fourth out-of-plane mode and the first in-plane mode for both speci-
mens. The I-specimen plot is smooth and continuous while the plot for the channel
specimen is discontinuous. This is because the penalty parameter had no affect on the
energy distributions in the I-specimen modes. Thus, the character of the mode was
constant and only the natural frequency varied. Further, the penalty parameter only af-
fected the out-of-plane modes of the I-specimen. Neither of these statements are true for
the channel specimen.

The energy distributions in the channel modes varied extensively with the penalty
parameter. A mode which was initially dominated by in-plane energy might eventually
evolve into an out-of-plane mode, and an out-of-plane mode might gain in-plane energy
until it had to be considered an in-plane mode. Thus, the penalty parameter affected
both in-plane and out-of-plane modes. For penalty parameters in excess of 1 x 10°, both
the natural frequencies and energy distributions of both specimens had converged. The
static and dynamic response of both specimens converged at the same value of the pen-
alty parameter, thus, 1 x 10° was used as the value for the penalty parameter in subse-

quent analyses.

Analysis 131




150

125

100

S0

NATURAL FREQUENCY HZ
3

150

125

S0

NATURAL FREQUENCY MZ

-SSP S, S S, S

1S
it
o
(P!'
!

b5 —B—8—8—8-—B—t o8

0 3 6 9 12 s

LOG PENALTY PARAMETER ()
oo 2ND QUT-OF-PLANE  oeo 18T N-PLANE
++ 3RD OUT-OF-PLANE << < 4TH QUT-OF-PLANE

(A} I-SPECIMEN

100

75

_____ Al
S e o et
+ + s

‘r\ /" -\\\_+ ___________
B8 -8, ¥ -

¥
: 3
+
*
F
1

e el

LOG PENALTY PARAMETER (%)

= 2ND QUT-OF-PLANE o»e BT
—-~ 3D OUT-OF-PLANE  +++4TH OUT-OF-PLANE

(B) CHANNEL SPECIMEN

%“
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The section properties used in Hooke’s law in Eqn. (5.160) were also used in the
mass matrix. These section properties were evaluated using a computer program pre-
sented by Coyette (Ref. 33). This program calculates the section properties for a thin-
walled open cross section assuming the branches of the cross section are straight and are
made of an isotropic homogeneous material. This program was subsequently modified
to evaluate the modulus-weighted section properties in Eqgs. (5.85-5.99) assuming the
layup in the branches is symmetric. The modulus-weighted section properties were used
in the static analysis. Since the finite element program uses the input section properties
in both the stiffness and the mass matrices, the modulus-weighted section properties
could not be used in the vibrational analysis. A listing of the section properties of both

specimens is presented in Appendix C.
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Chapter 6

Correlation of Numerical and Experimental Results

The numerical results from the finite element solution and the continuum solutions
are presented with the corresponding experimental data for the I-specimen and channel
specimen. In the first section, natural frequencies and mode shapes from the analyses
are compared with the experimental data from the free-free and the clamped-clamped
frame tests. In the second section, the predicted flexibility influence coefficients are
compared with coefficients calculated from the static test data. The comparisons of pri-

mary interest involve the predictions from the finite element solution and the exper-

imental data.

Correlation of Dynamic Data

The finite element program was used to predict the three-dimensional vibrational

response of both specimens for clamped and pinned boundary conditions. The in-plane
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continuum vibrational solution was used to model the free-free frame tests of the I-
specimen. The finite element program could not model the free-free frame tests because
of the presence of the rigid body modes. The continuum solution also provided the
versatility to model the end conditions as torsional springs providing valuable insight
into the physical problem. The correlation of the free-free vibrational data is presented

first followed by the correlation of the clamped-clamped vibrational data.

Free-Free Data

The numerical and experimental results for the in-plane, free-free natural frequen-
cies of the I-specimen are presented in Table 9. The maximum error occurs in the first
two modes where the errors are -3.5 and -8.2 % respectively. The discrepancies of the
analysis with respect to the experiment in the first two modes are attributed to the stiff-
ening influence of the elastic bands used to suspend the specimen. The elastic bands act
like compliant springs and in the lower modes the energy in the elastic bands represents
a sizable portion of the total energy in the mode. The higher modes have larger fre-
quencies and consequently higher energies, thus, the amount of energy in the elastic
bands relative to the specimen is less significant. The analytical predictions and exper-

imental results for the four, five, and six node modes correlate quite well.
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Table 9. Correlation of the free-free in-plane natural frequencies of the I-specimen

No. of Experiment Analysis ? Error®
Nodes Hz Hz %
2 25.8 24.9 -3.5
3 78.3 71.9 -8.2
4 151.0 150.4 -0.4
5 259.0 257.1 -0.7
6 388.0 390.9 0.7
2 Continuum solution
b (Analysis-Exp)/Exp x 100

The predicted four and five noded mode shapes of the I-specimen are shown in Fig.
45. The four and five node modes are presented because they provide an interesting test
of the analytical solution. The experimentally located nodes are indicated by dots in the
figure, the undeformed frame is represented by the solid line, and the analytical mode
shape by the dashed line. The mode shapes were normalized to make the largest dis-
placement 10 % of the radius. Thus, the mode shapes are exaggerated to make them
more visible. The analytical mode shapes correlate quite well with the experimental data.

The mode shapes for the two and three node modes are presented in Appendix A.

Clamped-Clamped Tests

The finite element program was used to model the clamped-clamped vibrational
tests for both specimens. The continuum solution confirmed the predictions of the finite
element solution for the in-plane response of the I-specimen. Initially, the analyses were
run with clamped-clamped end conditions resulting in predictions which were consist-
ently too high. Modeling the end conditions as hinges with respect to in-plane and out-
of-plane rotations resulted in predictions which were generally too low. Thus, predictions

using clamped-end and pinned-end conditions bracketed the experimental results indi-
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Figure 45. Free-free in-plane mode shapes for the I-specimen: The predicted mode shapes for the four
and five node modes for the I-specimen are presented with the experimentally located
nodes which are indicated by dots. The undeformed frames are represented by the solid
lines and the analytically predicted mode shape by the dashed lines.

Correlation of Numerical and Experimental Results 137




cating that the experimental boundary conditions acted like torsional springs. In the
lower modes, the experimental results correlated well with the clamped-clamped pred-
ictions. In the higher modes, the experimental values correlated well with the pinned-
pinned predictions. This indicates that as the frequency and energy of the modes
increased, the clamping eflectiveness of the boundary conditions decreased. In general,
the numerical results from the finite element computer program correlated well with the
experimental results with the exception of the in-plane modes of the channel specimen.

The comparison of the in-plane results will be presented first followed by the out-of-

plane results.

The predictions for the in-plane natural frequencies for the I-specimen from the fi-
nite element program are presented in Fig. 46. The dashed lines correspond to the ana-
lytical predictions obtained using clamped-end and pinned-end conditions. The first two
experimental values correlate very well with the clamped-clamped predictions, but the
experimental response begins to shift towards the pinned-pinned predictions in subse-
quent modes. The last in-plane mode (8 nodes) correlates well with the corresponding
pinned-pinned prediction. In the higher modes, the relative difference between the fre-
quencies for the pinned-end and clamped-end conditions decreases. For the eight noded
in-plane mode, the difference between the frequencies for the clamped-end and pinned-
end conditions is just slightly more than 6 %.

The experimental results and analytical predictions from the finite element program
and continuum solutions are presented in Table 10. The predictions from the continuum
solution essentially duplicate the predictions from the finite element code. The classical
solutions from Den Hartog (Ref. 11) for the first in-plane natural frequencies for
clamped and pinned boundary conditions are 59.4 and 29.9 hertz, respectively. These

values correlate very well with the numerical predictions. The correlation between the
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Figure 46.

10

Clamped-clamped in-plane natural frequencies for the I-specimen: The analytical pred-
ictions for the clamped-end and pinned-end conditions are represented by the dashed lines
and the experimental values are the solid line. The modes are ordered by the number of
nodes circumferentially and the frequencies are in hertz.
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analytical predictions for clamped-end conditions and the experimental values is good

initially, but degrades in the higher modes.

Table 10. Correlation of clamped-clamped in-plane natural frequencies for the I-specimen

Analyses
Experiment Clamped Pinned
No. of FEM? Cntnm® FEM:* Cntnm
Nodes Hz Hz Hz - Hz Hz
3 57.7 59.0 58.6 30.6 30.3
4 127.2 129.3 128.7 93.2 92.5
5 233.0 239.9 238.9 187.8 186.6
6 350.6 365.8 364.6 305.6 303.7
7 490.0 529.5 527.7 454.0 451.2
8 617.0 699.2 696.8 622.6 618.3
a Finite element model from Ref, 7
b Continuum solution

The continuum analysis was easily adapted to model the end conditions as torsional
springs. Modeling the end conditions as torsional springs provided the opportunity to
match the experimental frequency for each mode. The results of this effort are presented
in Table 11. The last column is the effective torsional spring stiffness necessary to obtain
the analytical natural frequency which essentially matches the experimental value. The
results show that the effective stiffness of the end conditions decreases with increasing

frequency producing the transition from clamped to pinned boundary conditions.

Correlation of Numerical and Experimental Results 140



Table 11. Effects of boundary spring stiffness on the in-plane vibrational response of the I-specimen

Boundary
Spring
Experiment Continuum Error? Stiffness
No. of o,
Nodes Hz Hz % in-Ib/rad
3 57.5 57.48 -.035 9x10°
4 127.2 127.32 0.094 9 x 10
5 233.0 233.60 0.258 6x10°
6 350.6 348.58 -.576 3x 108
7 490.0 485.38 -951 1 x 108
8 617.0 618.20 0.200 I x10

w

(Analysis-Exp)/Exp x 100

The curve in Fig. 47 shows the effect of the torsional spring constant on the pre-
diction of the first in-plane natural frequency. The two horizontal lines represent the
predictions for clamped-end and pinned-end conditions from the finite element program.
The logarithm to the base ten of the spring stiffness is plotted on the horizontal axis.
For very compliant and very stiff springs, the predicted natural frequency approaches the
predictions for pinned-end and clamped-end conditions, respectively. The blus sign in the
figure indicates the experimental value. The in-plane natural frequencies are sensitive to

small changes in the torsional spring stiffness.

The experimental and numerical results for the in-plane natural frequencies for the
channel specimen are presented in Table 12 and in Fig. 48. The correlation between the
finite element predictions and the experimental results is poor. The predictions for the
natural frequencies using both clamped-end and pinned-end conditions are much lower
than the experimental results. A sensitivity analysis showed that the in-plane natural

frequencies are very sensitive to the value of the first sectorial moment I, This term
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Effects of torsional spring end conditions: The solid line indicates the effect of the torsional
frequency of the first in-plane mode of the I-specimen. The hori-
dictions obtained using clamped and pinned boundary conditions.
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Figure 48. Clamped-clamped, in-plane natural frequencies for the channel specimen: The analytical
predictions for the clamped-end and pinned-end conditions are represented by the dashed
lines and the experimental values are the solid line. The modes are ordered by the number
of nodes circumferentially and the frequencies are in hertz.
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couples warping and in-plane bending. Other section properties characteristic of an

asymmetric cross section did not have a significant effect on the in-plane response.

Table 12. Correlation of clamped-clamped, in-plane natural frequencies for the channel specimen

FEM-*
Experiment Clamped Pinned

No. of
Nodes Hz Hz Hz

3 44.6 18.8 10.0

4 99.1 41.5 35.6

5 176.0 76.7 61.9

6 276.7 118.3 107.2

7 413.0 171.3 151.8

3 Finite element model from Ref. 7

The mode shapes for the five and six noded in-plane modes for both specimens are
presented schematically in Figs. 49 and 50. The five and six node modes are used for the
comparison because they provide an interesting test of the analysis. The mode shapes
are shown in top and front views. In the top view, the reference axis of the undeformed
frame is a straight line. The I-specimen mode shapes show pure radial motion while the
mode shapes of the channel specimen exhibit both radial and lateral motions. The mode
shapes for the I-specimen correlate very well with the experimental results. The mode
shapes for the channel specimen agree fairly well despite the poor predictions for the

natural frequencies.

The predictions from the finite element computer program for the out-of-plane na-
tural frequencies for the I-specimen are presented with the corresponding experimental
results in Fig. 51. The softening response exhibited by the experimental data seems to

be attributable to the boundary conditions. The experimental data follows the clamped-
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Figure 49. Five noded, in-plane, clamped-clamped mode shape for both specimens: The five noded
in-plane mode shapes for both sections are shown schematically. The experimentally lo-
cated nodes are indicated by dots, the undeformed frames are represented by the solid lines
and the analytically predicted mode shape by the dashed lines.
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Figure 50. Six noded, in-plane, clamped-clamped mode shape for both specimens: The six noded in-
plane mode shapes for both specimens are shown schematically. The experimentally lo-

cated nodes are indicated by dots, the undeformed frames are represented by the solid lines
and the analytically predicted mode shape by the dashed lines.
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Figure 51. Clamped-clamped out-of-plane natural frequencies for the I-specimen: The analytical
predictions for the clamped-end and pinned-end conditions are represented by the dashed
lines and the experimental values are the solid line. The modes are ordered by the number
of nodes circumferentially and the frequencies are in hertz.
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end predictions through the first five modes, then shifts from clamped-end to pinned-end
conditions between the fifth and sixth modes. This transition is very abrupt compared
to the shift observed in the in-plane response. After the shift, the experimental data fol-

lows the pinned-end predictions closely.

A plot of the analytical predictions and the experimental results for the out-of-plane
natural frequencies of the channel specimen is presented in Fig. 52. Due to the asym-
metric cross section of the channel specimen, predictions for only the first six out-of-
plane natural frequencies were obtained. The transition from clamped-end to pinned-end
conditions was also observed in the out-of-plane response of the channel specimen. The
finite element predictions agree well with the experimental data through the first three
modes. The transition from effective clamped-end to effective pinned-end conditions
begins in the fourth and fifth modes and is completed between the fifth and sixth modes.
It appears that the pinned-end predictions would correlate with the higher experimental
natural frequencies if those predictions were available.

The numerical and experimental results for the out-of-plane natural frequencies for
both specimens are summarized in Table 13. Though the plots show good correlation
in the first few modes, the discrepancy of the predicted frequency with respect to the
experimental value for the fundamental mode is actually 8.5 % and 6.7 % for the I-
specimen and channel specimen, respectively. The classical solution from Brown (Ref.
12) predicts a frequency of 7.5 Hz for the fundamental frequency of the I-specimen
confirming the prediction from the finite element code. The prediction of 15.4 Hz ob-
tained from the out-of-plane continuum solution is almost 100 % too high. The fact that
none of the analyses can predict the fundamental frequency is disturbing. Generally,

experimental frequencies are lower than those from the analysis. In this case, the exper-
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Figure 52. Clamped-clamped out-of-plane natural frequencies for the channel specimen: The analyt-
ical predictions for the clamped-end and pinned-end conditions are represented by the
dashed lines and the experimental values are the solid line. The modes are ordered by the
number of nodes circumferentially and the frequencies are in hertz.
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Table 13. Correlation of clamped-clamped, out-of-plane natural frequencies for both specimens

Experiment Clamped Pinned
No. of

Specimen Nodes Hz Hz Hz

[-specimen 2 8.2 7.5 -
3 29.8 25.4 6.3
4 64.3 58.4 24.6
5 110.4 105.4 57.7
6 157.8 161.7 104.1
7 164.7 220.7 158.5
8 207.4 278.2 214.9
9 254.7 332.0 269.8
10 314.7 383.8 322.0

Channel 2 7.4 6.9 -
3 25.4 24.2 5.9
4 55.4 55.8 23.1
5 91.1 103.7 54.7
6 148.8 164.4 100.4
7 155.2 234.8 156.6
8 187.0
9 214.0

a Finite element model from Ref. 7
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imental results are higher than the analysis, which is not usually the case when corre-

lating analysis and experiment. This discrepancy remains unresolved.

The mode shapes for the five and six node out-of-plane modes for both specimens
are presented in Figs. 53 and 54, respectively. The mode shapes are shown in both top
and front views. The mode shapes for the channel specimen modes show radial dis-
placements as well as out-of-plane displacements. This is typical of the coupled response
of the channel specimen. The mode shapes for the I-specimen show pure out-of-plane
motion characteristic of an uncoupled response. Good correlation is observed between
the predicted mode shapes and the experimentally located nodes for the mode shapes
of both specimens. The correlation for the lower modes was generally as good or better.

The mode shapes for the other modes are presented in Appendix A.

Correlation of Static Data

To correlate the experimental flexibility coefficients with the analytical values it is
necessary to choose the experimental results which are most representative of the small
deflection response of the frames. The in-plane test results are considered more reliable
than the out-of-plane test results, therefore, the values for flexibility coefficients
03, Oy, and oy, are taken from the in-plane tests. Specifically, the experimental values
associated with the forty pound radial load are used in the correlation of the data for
both specimens. The coefficients from the forty pound radial load were chosen because
it was the lowest load with the least amount of scatter in the data associated with it. In
the cases where the values for positive and negative torques are close, the values are

averaged. When the magnitudes are significantly different, the value associated with the
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Figure 53.
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Five noded, out-of-plane, clamped-clamped mode shape for both specimens: The five noded
out-of-plane mode shapes of both specimens are presented schematically. The exper-
imentally located nodes are indicated by dots, the undeformed frames are represented by

the solid lines and the analytically predicted mode shape by the dashed lines.
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Figure 54. Six noded, out-of-plane, clamped-clamped mode shape for both specimens: The six noded
out-of-plane mode shapes of both specimens are shown schematically. The experimentally

located nodes are indicated by dots, the undeformed frames are represented by the solid
lines and the analytically predicted mode shape by the dashed lines.
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negative torque is used in the correlation. The values for flexibility coeflicients
o1,y Oy, and o, are only obtained from the out-of-plane tests. The values for these coef-
ficients associated with lateral loads of 3.25 and 1.063 pounds are used for the I-
specimen and channel specimen, respectively.

The experimental values for the flexibility coefficients are correlated primarily with
predictions from the finite element solution. The predicted values were obtained using
clamped boundary conditions and two types of section properties. The finite element
program was developed for isotropic, homogeneous, materials. Purely geometric section
properties are generally used as input to describe the cross section of the specimen. To
try to account for the composite material system the modulus-weighted section proper-
ties discussed in Chapter 5 are also used. Thus, predictions obtained using modulus-
weighted and geometric section properties are presented. The modulus-weighted section
properties and the geometric section properties for both specimens are presented in Ap-
pendix C.

The finite element computer program uses linear elastic structural theory, thus, the
predicted flexibility matrix is symmetric. The experimental tests measured the total re-
sponse of the frames which is a combination of linear and nonlinear responses. As a re-
sult, the experimental flexibility matrices are generally not symmetric. The flexibility
influence coefficients of primary interest are the diagonal terms; o, oy, and oy. These
terms play the largest role in describing the load carrying behavior of the frames. With
the exception of the o, term, the off-diagonal terms play a small role in the static re-
sponse of the frames. The significance of a,, is a result of the coupling between out-of-
plane bending and torsion due to the curved geometry. The correlation of the static
results for the I-specimen will be discussed first followed by the results of the channel

specimen.
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I-Specimen Results

The flexibility coefficient «;, for the I-specimen is a special case in that values for
&y, Were obtained from two independent tests and from two independent analyses. The
analytical predictions and experimental results for the flexibility coefficient a,, are pre-
sented in Table 14. The finite element predictions using clamped and pinned boundary
conditions bracket the experimental value from the in-plane static test, and also the
crush test. The crush test result for a,, is closer to the prediction obtained for clamped-
end conditions reflecting the difference in the experimental boundary conditions between
the tests. The continuum static solution was used to model the end conditions as
torsional springs. The torsional spring stiffness required to match the in-plane static test
value for a,, is smaller than the torsional spring stiffnesses required to match the in-plane
natural frequencies in Table 11. The lower torsional spring stiffness requ-ired in the static
tests with respect to the vibrational test is probably due to the difference in the static

mode shape and the vibrational mode shape.

Table 14. Correlation of flexibility coefficient & for the I-specimen

ay
Source in/ib
Experiment
Crush Test 0.640 x 103
Static Test 0.843 x 1073
FEM-
Pinned 0.926 x 103
Clamped 0.578 x 1073
Continuum
Spring® 0.8559 x 103
a Finite element solution from Ref. 7
b Continuum solution with torsional spring stiffness

o, =2 x 10* in-lb/rad .
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The effect of the torsional spring constant on the value of flexibility coefficient a,
is demonstrated in Fig. 55. The logarithm to the base ten of the spring stiffness is plotted
along the horizontal axis and «,, is plotted on the vertical axis. The two horizontal lines
represent the predictions from the finite element program for clamped-end and pinned-
end conditions. For very compliant springs and very stiff springs, the continuum anal-
ysis matches the predictions of the finite element code for pinned-end and clamped-end
conditions, respectively. The plus sign in the figure indicates the experimental result, and
it is closer to the pinned-end prediction than to the clamped-end prediction. Comparing
the plots in Figs. 47 and 55 shows that the torsional spring stiffness required to achieve
effectively clamped-end conditions are different for static and dynamic conditions. The
effective stiffness of the experimental boundary conditions is higher for the dynamic tests

than for the static tests.

The flexibility coefficients for the I-specimen from the finite element program using
both modulus-weighted and geometric section properties are presented with the corre-
sponding experimental values in Table 15. In general, the correlation between the ex-
perimental results and the predictions obtained using the modulus-weighted section
properties is better than with the predictions obtained using the geometric section
properties. The modulus-weighted values predict a stiffer response than the geometric
section properties.

The discrepancy in the flexibility coefficient a, is attributed to the flexibility in the
experimental boundary conditions. The numerical predictions for flexibility coeflicient
o, are significantly higher than the experimental result. The modulus-weighted value
correlates the best, but it is 20 % higher (more compliant) than the experimental value.
Torsional springs cannot explain this discrepancy since additional flexibility would make

the predictions more compliant. This result is consistent with the discrepancy in the
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Correlation of Numerical and Experimental Results
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Influence of torsional spring stiffness on ¢t;;: The plot shows that the value of «,; is very
sensitive to small changes in the flexibility of the end conditions. The log of the torsional
spring stiffness is plotted on the horizontal axis. The horizontal lines are the predictions for
clamped-end and pinned-end conditions.
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fundamental out-of-plane natural frequency of the I-specimen. The predicted values for
flexibility coefficients oy, and ay using modulus-weighted section properties correlate
well with the experimental values. The predictions obtained using geometric section
properties do not correlate as well. The correlation with the experimental result for as,
from the out-of-plane tests is not as good. The discrepancy is on the order of 20 %

similar to the discrepancy in oy, .

Table 15. Correlation of the flexibility coefficients for the I-specimen

Flexibility Experiment Analysis®
Coefficient M-We Geometrice
0y in/lb 0.843 x 1073 0.5778 x 103 0.6709 x 10-3
o,  in/lb 0.113 0.1406 0.2006
oy, rad/in-lb 0.131 x 102 0.1396 x 102 0.1892 x 102
Oys 1/1b 0.101 x 10 0.1109 x 10! 0.1503 x 10!
03, 1/1b 0.0877 x 10! 0.1109 x 10! 0.1503 x 10!
o, in/lb 0.148 x 102 0.715 x 10~ 0.834 x 10-°
Oy in/lb 0.658 x 10~ 0.715 x 10-5 0.834 x 10-5
O3 1/Ib 0.107 x 1073 0.197 x 10-¢ 0.497 x 106
Oty 1/1b 0.261 x 10+ 0.197 x 10-¢ 0.497 x 10-¢

a Finite element solution from Ref. 7

b Modulus weighted section properties

c Geometric section properties

The predicted values for flexibility coefficients a,, and a,; are very small and can be
interpreted as zero. The experimental value for flexibility coeflicient a;, does not corre-
late well. This discrepancy is believed to be due to a geometric nonlinearity which cannot
be modeled using linear structural theory. The experimental values for oy, o, and oy
are small and were inconsistently measured. The scatter in the data associated with these
coefficients indicates that the effects of these coeflicients are too small to measure reli-

ably. Thus, the discrepancies in these coeflicients is not significant.
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Channel Specimen Results

The flexibility coefficients for the channel specimen from the finite element program
using both modulus-weighted and geometric section properties are presented with the
corresponding experimental values in Table 16. In general, the correlation between the
experimental results and the predictions obtained using the modulus-weighted section
properties is better than with the predictions obtained using the geometric section
properties. The predicted values for flexibility coefficient «,, are a minimum of five times
larger than the experimental result. This discrepancy is too large to be explained by
experimental anomalies. The discrepancy is consistent with the correlation observed in
the in-plane natural frequencies of the channel specimen. A sensitivity analysis revealed
that «,, is very sensitive to the first sectorial moment I,,. Other section properties
characteristic of an asymmetric section did not significantly effect the prediction of «,.

The discrepancy in the values for flexibility coefficient a,, is consistent with the dis-
crepancy in the fundamental out-of-plane natural frequency of the channel specimen.
The discrepancy is smaller than the corresponding discrepancy in the I-specimen results.
The experimental values for flexibility coefficients oy, and a,; corresponding to the neg-
ative torque data correlate well with the modulus-weighted predictions. The exper-
imental value for a;, obtained from the out-of-plane tests does not correlate well with

either of the predicted values.
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Table 16. Correlation of the flexibility coefficients for the channel specimen

Flexibility Experiment Analysis®
Coefficient M-Wr Geometric*
oy, in/lb 1.66 x 1073 8.013 x 1073 9.758 x 1073
o,  in/lb 0.242 0.2678 0.3653
oy;  rad/in-lb 0.258 x 10-? 0.2475 x 102 0.3401 x 10-2
O3 1/1b 0.224 x 10 0.197 x 10! 0.271 x 107!
Ol 1/lb 0.120 x 10! 0.197 x 10 0.271 x 10~
o, 1n/lb 0.842 x 102 1.456 x 10-2 1.777 x 102
oy in/lb 0.790 x 10~ 1.456 x 102 1.777 x 102
043 1/1b 0.369 x 102 0.407 x 10-# 0.497 x 10-¢
Oy 1/1b —.201 x 10+ 0.407 x 10~ 0.497 x 10

2 Finite element solution from Ref. 7

b Modulus weighted section properties

c Geometric section properties

The correlation of flexibility coefficients o, and ay, is not bad. The values are at
least on the same order of magnitude. However, the good correlation is considered a
coincidence since the experimental value for o, is likely measuring a geometrically non-
linear response and the scatter in the data associated with ay, is very high. Even the
predicted values for a,, and oy, should be considered carefully since they are linked to the
poorly predicted in-plane response of the channel specimen. The experimental values for
flexibility coefficients o and a;; do not correlate well with the predicted values. The ex-
perimental values are actually smaller than the corresponding values for the I-specimen.
This is unusual since these coefficients couple the in-plane and out-of-plane responses
and the coupling for the channel specimen is expected to be more pronounced than for
the I-sp.ecimen. This indicates that the experimental values for these coeflicients cannot

be relied upon. Certainly the correlation in these coeflicients cannot be treated seriously.
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Chapter 7

Concluding Remarks

The primary purpose in this study was to evaluate a new finite element program
which was developed by Noor et al., (Ref. 7) specifically for the free-vibrational analysis
of curved, thin-walled beams with open sections. An experimental program was under-
taken to generate data which was characteristic of the static and free-vibrational re-
sponse of two test specimens. The test specimens were semi-circular, graphite-epoxy
frames which were intended to represent aircraft fuselage frames. One test specimen had
a symmetric | cross section and the other had an asymmetric channel cross section.

The experimental program consisted of both static and dynamic tests. A series of
static tests generated thc flexibility matrix which relates radial, lateral, and torsional
loads at the midspan to radial, lateral, and twist displacements at the midspan. The dy-
namic tests provided the frequencies and node locations of the in-plane and out-of-plane
free-vibrational modes for clamped-clamped end conditions.

The finite element program is based on a Vlasov-type, thin-walled, curved beam

theory and accounts for the additional effects of transverse shear deformation and
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rotatory inertia. However, for the specimens in this study, transverse shearing defor-
mations did not significantly contribute to the response. The analytical predictions from
the finite element program were confirmed in part by independent continuum solutions
for the in-plane static and dynamic response of a monosymmetric curved beam.

The analytical predictions correlated well with the experimental data {rom the sym-
metric I-specimen. It was found that the experimental boundary conditions acted like
torsional springs instead of clamps. The analytical predictions for the natural frequencies
using clamped-end and pinned-end conditions bracketed the experimental data. The an-
alytically predicted mode shapes correlated quite well with the experimentally located
node positions. The largest discrepancy occurred in the prediction of the first out-of-
plane natural frequency, which was 8.5 % lower than the experimental value (see Table
13).

The analytical predictions for the static response of the I-specimen also correlated
well with experimental data. A substantial discrepancy in flexibility cocflicient o, (radial
displacement/radial load) was shown to be a function of the flexibility in the exper-
imental boundary conditions. Further investigation showed that the static tests required
a softer support to model the boundary conditions than was required in the dynamic
tests (compare Tables 11 and 14). The analytical prediction for flexibility coeflicient ay,
(lateral displacement/lateral load) was larger than the experimental value. T his is con-
sistent with the discrepancy in the first out-of-plane natural frequency, since in both
cases the analysis predicts a more compliant response than is seen in the experiments.

The correlation between analysis and experiment is less satisfactory for the channel
specimen than for the I-specimen. In general, the predicted out-of-plane static and
vibrational responses correlated well with the experimental data. The predictions for the
out-of-plane natural frequencies using clamped-end and pinned-end conditions brack-

eted the experimental results (see Fig. 53). The predictions for flexibility coeflicients
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ay; and a,, correlated well with the experimental data( see Table 16). The analytical
predictions for the first out-of-plane natural frequency (Table 13) and flexibility coeffi-
cient a,, (Table 16) were again predicted to be more compliant than the experimental
results consistent with the I-specimen results. These discrepancies are worth noting since
it is unusual when correlating analysis with experimental data to find the analysis more
compliant than the experimental response.

Large discrepancies were observed between the analytical predictions for the in-
plane static and vibrational responses of the channel specimen and the experimental
data. The experimental natural frequencies are two to three times higher than the pre-
dicted values (see Table 12). Thus, the analysis is significantly more compliant than the
experiment. Consistent with this, the analytical prediction for flexibility coefficient a,,
(Table 16) is five times higher than the experimental values. Discrepancies of this mag-
nitude are difficult to explain, however, further investigation did show that the in-plane
response of the asymmetric channel specimen is extremely sensitive to the cross-sectional
property 1, which couples in-plane bending and warping.

The finite element program was developed for isotropic homogeneous materials.
The composite nature of the test specimens was accounted for in part by using
modulus-weighted section properties in place of section properties calculated based
purely on the geometry of the cross section. The flexibility influence coefficients obtained
using the modulus-weighted section properties correlated better with the experimental
data than did coefficients obtained using purely geometric section properties (see Tables
15 and 16).

The magnitudes of some of the experimentally measured flexibility coefficients were
found to be a function of the algebraic sign of the applied torque (see Table 6 for ex-
ample). The experimental values for flexibility coefficients «,, and «,, differed by two

orders of magnitude (Table 5-8). The values for flexibility coefficients o,; and oy, Were
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different magnitudes and in the case of the channel specimen were consistently of dif-
ferent signs. Linear structural theory predicts the flexibility matrix to be symmetric, and
consequently cannot account for the asymmetry of the flexibility matrixes measured in
the experiments. A detailed analysis of the static out-of-plane response of curved frames
requires a solution capable of modeling geometric nonlinearities. This is particularly true
for frames with asymmetric cross sections. The necessity for a nonlinear solution is less

apparent in the vibrational response of the curved frames.

Future Work

The data from the experimental tests could be improved upon in a number of ways.
Simply securing the ends in potting compound and clamping the ends to a steel beam
was not sufficient to model clamped end conditions. More elaborate steps could be taken
to obtain clamped conditions. As a minimum, the potted ends should be bolted to the
steel beam. The resolution in the out-of-plane static tests might be increased if the
specimens were loaded with less force and more torque. This requires using larger mo-
ment arms. Doing this without adding excessive weight to the specimens might not be
a trivial exercise.

With respect to the analysis, this study has raised some serious doubt about the
accuracy of the predictions from the finite element program for the in-plane response
of a curved beam with an asymmetric cross section. Comparisons with similar exper-
imental data for other asymmetric sections seems to be in order. Certainly, some effort
should be made toward resolving this issue since this element is expected to be imple-

mented in a larger finite element code.
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The discrepancies in the in-plane response of the channel specimen are of a magni-
tude that makes it difficult to attribute them to the composite material system; however,
extending the Hooke’s law relation in the finite element program to account for the
constitutive relations for laminated composites might help. Doing this may help explain
the discrepancies in the fundamental out-of-plane natural frequencies, since they are of
a much smaller magnitude.

Thin-walled curved beam theories are complicated and application to composite
structures should be undertaken with some caution. The assumption in Vlasov’s theory
that the shear strain in the midplane of the wall vanishes is a result of isotropic elasticity.
This assumption should be re-examined using anisotropic elasticity to determine if it is
a valid assumption with respect to laminated composites.

Finally, a logical extension of this experimental work would be to load the frames
to failure. Such tests would provide information on the large displacement response of
the composite frames as well as first failure and post failure response. Research of this
nature is certainly more germane to the issue of crashworthiness. This research is cur-
rently being conducted by Mr. E. Moas, Graduate Research Assistant, and Professor
O. H. Griffin in cooperation with the Landing and Impact Dynamics Branch at NASA

Langley Research Center through the NASA-Virginia Tech Composites Program.
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Appendix A
Vibrational Test Data

This appendix contains some of the data from the vibrational tests that was not
presented in the text. The first section contains the frequency response plots from the
clamped-clamped tests. The second section contains the comparison of the analytical
mode shapes and the experimental node locations.

Frequency Response Data from Dynamic Tests

The frequency response plots from the structural analyzer dynamic tests are pre-
sented here for the interested reader. Two sets of tests were run for each specimen, one
series with radial excitation and one series with lateral excitation. The specimens were
excited over a frequency range of 0-400 hertz. Noise began to dominate the response
signal at about 375 hertz. In order to obtain sufficient resolution, it was necessary to test
the specimens over smaller sub ranges, thus, the plots are presented in stages which
overlap.

Three displacement probes were monitored in each test, thus, there are three plots
in each figure. Each plot consists of a response curve and a phase angle curve. A natural
frequency is marked by a spike in the response curve accompanied by a shift in the phase
angle curve.

The probes were mounted in different orientations to detect both radial and lateral
motion. The probe location and orientation is labeled in each plot. The three different
orientations are defined in Fig. 56. The locations of the probes are measured in inches
from the midspan of the specimen. The horizontal axis is the frequency of excitation in
hertz and the vertical axis for the response curves has units of inches per pound on a log
scale.

The I-specimen plots are presented first followed by the channel specimen plots.
Ideally a mode is indicated by a sharp isolated spike, however, frequently the spikes are
small and closely spaced making interpretation difficult. This is particularly true for the
channel specimen plots where both in-plane and out-of-plane modes were excited with
either radial or lateral excitation. The magnitude of the spikes is generally a poor indi-
cator of the relative strengths of the modes. The spike magnitude is a strong function
of probe location and the location of the electro-magnetic shaker. If the shaker or the
probe are located near a node, the mode will be difficult to excite or detect, respectively.
The plots are presented without further comment.
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(A)

(B)

©)

Figure 56. Proximity probe orientations for clamped-clamped vibrational tests: The probe orientations
relative to both cross sections are presented in (A)-(C). (A) In-plane edge. (B) In-plane
Web. (C) Out-of-plane.
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Mode Shapes

This section presents the analytical mode shapes superimposed on the undeformed
frame. The modes which were presented in the text are not repeated here. The exper-
imentally located nodes are represented by dots in the figure, the undeformed frame is
indicated by the solid line, and the mode shape is the broken line. Two free-free modes
are presented in the first figure. The remaining modes are for the clamped-clamped case.
The analytical mode shape was calculated by the finite element program discussed in
Chapter 5. Two plots are presented in cach figure, one for the I-specimen and one for
the channel. The plots for the clamped-clamped modes are presented from top and front
views. The I-specimen mode shapes consist of pure radial or pure out-of-plane motion.
The channel modes are coupled and generally show motion in both views. The figures
are presented without further comment.

Vibrational Test Data 184



————
.- -~
-
-~ -
S -

\
1]
0 80
= MODE SHAPE
« « « NODE LOCATION
(A) T¥O NODE MODE
o5
\
’/ t
J ;
i {
0
0 80

UNDEFORMED
--- _MODE SHAPE
» ++ NODE LOCATION

(B) THREE NODE MODE

Figure 70. Two and three noded in-plane, free-free mode shapes: Correlation between experimental
data and continuum solution for the free-free in-plane modes of the I-specimen.
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Figure 71. Three noded in-plane, clamped-clamped modes for both specimens: The mode shapes of the
three noded in-plane modes for both specimens are presented schematically.
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Figure 72. Four noded in-plane, clamped-clamped modes for both specimens: The mode shapes of the
four noded in-plane modes for both specimens are presented schematicaily.
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Figure 73. Seven noded in-plane, clamped-clamped modes for the I-specimen: The mode shape of the
seven noded in-plane mode for the I-specimen is presented schematically.
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Figure 74. Two noded out-of-plane, clamped-clamped modes for both specimens: The mode shapes
of the two noded out-of-plane modes for both specimens are presented schematically.
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Figure 75.

Vibrational Test Data
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Three noded out-of-plane, clamped-clamped modes for both specimens: The mode shapes
of the three noded out-of-plane modes for both specimens are presented schematically.
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Figure 76. Four noded out-of-plane, clamped-clamped modes for both specimens: The mode shapes
of the four noded out-of-plane modes for both specimens are presented schematically.
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Figure 77. Seven noded out-of-plane, clamped-clamped mode for the I-specimen: The mode shape of
the seven noded out-of-plane mode for the I-specimen is presented schematically.
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Appendix B
Static Test Data

This appendix contains some information on the static tests which was not covered
in the text. The first section presents the reduction scheme was used to calculate the
lateral and radial displacements at the centroid of the cross section at midspan. The
second section presents a sample of the reduced data f{rom the in-plane and out-of-plane
tests. '

Static Test Data Reduction

The data reduction scheme for the static tests used three measured displacements
on the load fixture to calculate the twist, ¢,, of the cross section, the radial displacement,
W, and the lateral displacement, V, at the centroid of the test specimen. In general, three
measurements are sufficient to define the location of a body moving within a plane;
hence, it is assumed that the midspan cross section does not deform circumferentially.

We assume that the load fixture and the test specimen deform as a rigid body, thus,
the load fixture and test specimen can be represented by a rectangular block. A generic
rectangular body is shown in Fig. 78. A Cartesian coordinate system is placed at one
corner of the rectangular block with positive axis coinciding with the sides of the block.
The Cartesian coordinate system is consistent with the system used in the text. With
respect to the test specimen the z-axis is directed radially toward the center of the curved
frame and the y-axis is perpendicular to the frame. The distances d,, d,, and d,, locate
the three dial indicators with respect to the origin of the coordinate system. If the dis-
tance r,, and the angle, 6., locate the centroid C of the cross section with respect to point
O on the load fixture, then the initial centroidal coordinates can be obtained from

Yo = 1, cosd,
Z, = I, Sinf,

(B.1)

Since the block is a rigid body, the location of the centroid can always be located
from the point O on the block. Thus, given the deformed coordinates of O, it is possible
to calculate the deformed coordinates of the centroid C. The deformed state of the block
is shown in Fig. 79. The deformed centroidal coordinates can be calculated from

y* = y,+ 1, cosf, + ¢
z: = z: + rz sin 6:+ d): (B-2)

in which y, and z, are the deformed coordinates of point O, and ¢, is the twist.
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The centroidal displacements V and W are given by

W = z. -2

Thus, the unknowns necessary to calculate the centroidal displacements are
b, V., and z,. The dial indicators are labelled 1, 2, and 3. The measurements from each
dial indicator will be referred to as m,, m,, and m, , respectively. The points O, P, and
Q lie along line 1. The equation for line 1, can be calculated from the coordinates of
points B and C which are (d;,m,) and (d, + d;,m,), respectively. The twist, ¢,; is the
slope of line 1. The equations for ¢, and line 1, are

b = (my - my)
X d, (B.4)
Ip: z-my, = ¢yly-(d; + dy]
Since point O lies on line 1;, the coordinate y, and z, must satisfy Eqn. (B.4). Points

O and R define a second line, 1,; which is perpendicular to line 1, thus the slope of line
l,is -1/¢,. A second equation for line 1, and the coordinates y, and z, must satisfy this

equation as well.

L z-dy = -—— (y-my) (B.5)

X

Substituting y, and z, into Eqn. (B.5), solving for y,, and substituting that expression
into the equation for line 1, yields the following expressions for y, and z,.

z, = {my + ¢,[d.d; + my-(d; + dyl} (B.6)
Yo = ¢x(d3 - Zo) T my '
The expressions for y, and z, can be used in conjunction with Eqs. (B.1-B.3) to ob-

tain the lateral and radial displacements of the centroid. The special case where ¢, is zero
corresponds to pure translation and the equations reduce to

my
my (B.7)

v
w

as expected.
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Reduced Static Data

The tables presented in this section contain a sample of the reduced data obtained
from the reduction scheme presented in the previous section. The radial and lateral dis-
placements and the twist at midspan for both test specimens for radial loads of twenty,
forty, and sixty pounds are presented in Tables 17, 18, and 19. The moment arm asso-
ciated with each set of data is different for the two specimens. There is more data for the
channel specimen because the response of the channel specimen was not as consistent
as the response of the I-specimen. The flexibility influence coefficients were calculated
from this data using the least squares method discussed in Chapter 4. The radial and
lateral displacements and the twist at midspan for both specimens from the out-of-plane
tests are presented in Tables 20 and 21. For the out-of-plane tests, the moment arms
were the same for the two specimens but the lateral loads were different. The test data
for lateral loads of 2.187 and and 1.063 pounds are presented in Table 20 for the I-
specimen and channel specimen, respectively. The test data for lateral loads of 3.25 and
2.00 pounds are presented in Table 21 for the I-specimen and the channel specimen, re-
spectively.
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Appendix C
Cross-Sectional Properties

The modulus-weighted and geometric cross-sectional properties of the two speci-
mens are presented in Table 22. The geometric section properties were obtained using a
computer program listed in Ref. 33. The modulus-weighted section properties were ob-
tained by modifying this computer program to evaluate the expressions for the
modulus-weighted section properties presented in Chapter 5. The modulus-weighted
section properties are normalized by the effective engineering moduli determined by the
coupon tests discussed in Chapter 2. The mass density of the material measured to be
1465. kilograms per cubic meter.

Table 1. Cross-sectional properties of both test specimens

Section I-specimen Channel Specimen
Property M-W: Geometric® M-W: Geometric®
A m? 0.3658 x 10-*¢ 0.3310 x 10-*  0.2323 x 103 ¢ 0.2102 x 10-3
A, m 0.3658 x 10~ ¢ 0.3310 x 10  0.2323 x 103 ¢ 0.2102 x 10-3
A, m? 0.3658 x 10-*¢ 0.3310 x 10-*  0.2323 x 103 ¢ 0.2102 x 10-3
I, m* 0.5339x 10-7¢  0.4813 x 107 0.3202 x 107 < 0.2888 x 10-7
L, m* 1.6705 x 107 ¢ 1.5114 x 107 0.4844 x 107 ¢ 0.4382 x 107
I m* 0.0000 x 107 ¢ 0.000 x 10-7 —.1070 x 10-7 ¢ —.9685 x 10-*
J m* 0.8842 x 10-°¢ 0.7825 x 10  0.5026 x 10~°¢ 0.4378 x 10-°
S. m’ 0.9671 x 10-7¢  0.8755x 107 0.1089 x 10" 0.9860 x 10-%
Iy m’ =.3217x 10-% ¢ —4539 x 10-%¥  —.6650 x 10-° ¢ —.6023 x 10~*
L. m’ 08114 x 107 < 0.7343 x 10*  0.4301 x 10 0.3829 x 10-°
I mé 0.3558 x 1012 < 0.3213 x 10-®  0.1688 x 10-19¢ (0.1526 x 10-1°

€
€

Modulus-Weighted section properties from Chapter 5
Geometric section properties from Ref. 33
Normalized by E=5.075 x 10® Nt/m?

Normalized by G=1.953 x 10'® Nt/ m?

a o o =
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